scholarly journals Magnetic Fields in the Disk-Halo Interface

1991 ◽  
Vol 144 ◽  
pp. 169-174
Author(s):  
Yoshiaki Sofue

A review is given of large-scale magnetic fields in disks and halos of spiral galaxies. A particular attention is given to vertical field structures, and we discuss their origin and implication on their interaction with halo gas. We point out that the disk-halo magnetic interface plays an important role in circulation of interstellar gas in galaxies, in particular a large-scale circulartion from the galactic center to outer disk regions.

1983 ◽  
Vol 100 ◽  
pp. 157-158
Author(s):  
E. Battaner ◽  
M. L. Sánchez-Saavedra

A magnetohydrodynamical result is deduced, which could contribute to our understanding of spiral and ring structures in galaxies. The usual expressions for the continuity, momentum and induction equations are adopted for the gas of a galaxy, and the following simplifying hypotesis are made : a) Steady state conditions, b) Axisymmetry, c) A velocity field given by (π=0, θ=θ(r), Z=0) for the interstellar gas (where π,θ and Z are the radial, azimuthal and vertical to the galactic plane components and r is the distance from the galactic center). Then, the direction of magnetic field must be azimuthal and the plasma distribution is compatible with ring structures.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2008 ◽  
Vol 4 (S259) ◽  
pp. 455-466 ◽  
Author(s):  
JinLin Han

AbstractThe magnetic structure in the Galactic disk, the Galactic center and the Galactic halo can be delineated more clearly than ever before. In the Galactic disk, the magnetic structure has been revealed by starlight polarization within 2 or 3 kpc of the Solar vicinity, by the distribution of the Zeeman splitting of OH masers in two or three nearby spiral arms, and by pulsar dispersion measures and rotation measures in nearly half of the disk. The polarized thermal dust emission of clouds at infrared, mm and submm wavelengths and the diffuse synchrotron emission are also related to the large-scale magnetic field in the disk. The rotation measures of extragalactic radio sources at low Galactic latitudes can be modeled by electron distributions and large-scale magnetic fields. The statistical properties of the magnetized interstellar medium at various scales have been studied using rotation measure data and polarization data. In the Galactic center, the non-thermal filaments indicate poloidal fields. There is no consensus on the field strength, maybe mG, maybe tens of μG. The polarized dust emission and much enhanced rotation measures of background radio sources are probably related to toroidal fields. In the Galactic halo, the antisymmetric RM sky reveals large-scale toroidal fields with reversed directions above and below the Galactic plane. Magnetic fields from all parts of our Galaxy are connected to form a global field structure. More observations are needed to explore the untouched regions and delineate how fields in different parts are connected.


1991 ◽  
Vol 144 ◽  
pp. 267-280 ◽  
Author(s):  
Rainer Beck

Spiral galaxies host interstellar magnetic fields of 4-15 μG total strength. A significant fraction of the field lines shows large-scale structures. At face-on or moderately inclined view, the field lines run generally parallel to the spiral arms, either with uniform direction with respect to azimuthal angle (axisymmetric spiral, ASS), with one reversal along azimuthal angle (bisymmetric spiral, BSS), or with spiral orientation without dominating direction.At edge-on view, the field is concentrated in a thin disk, often surrounded by a thick radio disk with field lines mostly parallel to the plane, similar to the quadrupole-type dynamo field. Radio polarization data from NGC891 indicate that the thermal gas seen in Hα is responsible for Faraday depolarization. The required scaleheight of the field of ~4 kpc is comparable to the value expected in case of energy equipartition between magnetic fields and cosmic rays. The interacting edge-on galaxy NGC 4631 shows a much larger radio halo with field lines perpendicular to the disk, possibly driven by a strong galactic wind or the result of a dipole-type halo field.Field lines bending out of the plane are also visible in face-on galaxies as regions with high rotation measures and low star-formation activity. The resemblance to the phenomenon of the solar corona suggests to call them “galactic coronal holes”.


1990 ◽  
Vol 140 ◽  
pp. 83-89
Author(s):  
A.A. Ruzmaikin

The fast dynamo acting in a turbulent flow explains the origin of magnetic fields in astrophysical objects. Stellar cycles and large-scale magnetic fields in spiral galaxies reflect the behaviour of a mean magnetic field. Intermittent magnetic structures in clusters of galaxies are associated with random magnetic field.


1996 ◽  
Vol 169 ◽  
pp. 489-495
Author(s):  
John M. Dickey

The velocity dispersion of the interstellar gas measured perpendicular to the disk in face-on spiral galaxies shows a remarkable consistency. Typically the width of the velocity distribution decreases monotonically with increasing galactic radius through the luminous, stellar disk; but in the outer disk where there is gas but no stars the velocity dispersion is συ ≃ 7 km s−1 with a scatter of 2 km s–1 at most from one position to another and from one galaxy to another. Trying to understand this number raises questions about the thermal state of the H I in outer, gaseous disks. The most important issue is to understand the dominant heating and cooling processes for the atomic gas.


2012 ◽  
Vol 10 (H16) ◽  
pp. 387-387
Author(s):  
S. Nishiyama ◽  
H. Hatano ◽  
T. Nagata ◽  
M. Tamura

AbstractWe present a large-scale view of the magnetic field (MF) in the central 3° × 2° region of our Galaxy. There is a smooth transition of the large-scale MF configuration in this region.


1998 ◽  
Vol 184 ◽  
pp. 271-272
Author(s):  
K. Wada ◽  
T. Minezaki ◽  
K. Sakamoto ◽  
H. Fukuda

Numerical modeling of the interstellar gas in galaxies is an effective approach to infer galactic gravitational structure. This is because the dynamical behavior of gas is very sensitive to the background gravitational potential. Since the dynamical resonances depend closely on the mass distribution and the pattern speed of the non-axisymmetric component, it is possible to determine these dynamical parameters by comparison of numerical simulations and gas observations.


1990 ◽  
Vol 140 ◽  
pp. 115-116
Author(s):  
R. Meinel ◽  
D. Elstner ◽  
G. Rüdiger ◽  
F. Krause

Radio polarization observations of spiral galaxies suggest the existence of large-scale galactic magnetic fields which are of either axisymmetric -spiral (ASS) or bisymmetric-spiral (BSS), i.e. non-axisymmetric, structure (cf. Beck, 1939). Clear evidence for a BSS field was indicated for M31 by M. Krause et al. (1989).


Sign in / Sign up

Export Citation Format

Share Document