scholarly journals Probing interstellar magnetic fields with Supernova remnants

2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.

2012 ◽  
Vol 10 (H16) ◽  
pp. 395-395
Author(s):  
Roland Kothes

AbstractAs supernova remnants (SNRs) expand, their shock waves freeze in and compress magnetic field lines they encounter; consequently we can use SNRs as magnifying glasses for interstellar magnetic fields. A simple model is used to derive polarization and rotation measure (RM) signatures of SNRs. This model is exploited to gain knowledge about the large-scale magnetic field in the Milky Way. Three examples are given which indicate a magnetic anomaly, an azimuthal large-scale magnetic field towards the anti-centre, and a chimney that releases magnetic energy from the plane into the halo.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 699-699
Author(s):  
Klaus Dolag ◽  
Alexander M. Beck ◽  
Alexander Arth

AbstractUsing the MHD version of Gadget3 (Stasyszyn, Dolag & Beck 2013) and a model for the seeding of magnetic fields by supernovae (SN), we performed simulations of the evolution of the magnetic fields in galaxy clusters and study their effects on the heat transport within the intra cluster medium (ICM). This mechanism – where SN explosions during the assembly of galaxies provide magnetic seed fields – has been shown to reproduce the magnetic field in Milky Way-like galactic halos (Beck et al. 2013). The build up of the magnetic field at redshifts before z = 5 and the accordingly predicted rotation measure evolution are also in good agreement with current observations. Such magnetic fields present at high redshift are then transported out of the forming protogalaxies into the large-scale structure and pollute the ICM (in a similar fashion to metals transport). Here, complex velocity patterns, driven by the formation process of cosmic structures are further amplifying and distributing the magnetic fields. In galaxy clusters, the magnetic fields therefore get amplified to the observed μG level and produce the observed amplitude of rotation measures of several hundreds of rad/m2. We also demonstrate that heat conduction in such turbulent fields on average is equivalent to a suppression factor around 1/20th of the classical Spitzer value and in contrast to classical, isotropic heat transport leads to temperature structures within the ICM compatible with observations (Arth et al. 2014).


1989 ◽  
Vol 136 ◽  
pp. 243-263 ◽  
Author(s):  
F. Yusef-Zadeh

Recent studies of the Galactic center environment have revealed a wealth of new thermal and nonthermal features with unusual characteristics. A system of nonthermal filamentary structures tracing magnetic field lines are found to extend over 200pc in the direction perpendicular to the Galactic plane. Ionized structures, like nonthermal features, appear filamentary and show forbidden velocity fields in the sense of Galactic rotation and large line widths. Faraday rotation characteristics and the flat spectral index distributions of the nonthermal filaments suggest a mixture of thermal and nonthermal gas. Furthermore, the relative spatial distributions of the magnetic structures with respect to those of the ionized and molecular gas suggest a physical interaction between these two systems. In spite of numerous questions concerning the origin of the large-scale organized magnetic structures, the mechanism by which particles are accelerated to relativistic energies, and the source or sources of heating the dust and gas, recent studies have been able to distinguish the inner 200pc of the nucleus from the disk of the Galaxy in at least two more respects: (1) the recognition that the magnetic field has a large-scale structure and is strong, uniform and dynamically important; and (2) the physics of interstellar matter may be dominated by the poloidal component of the magnetic field.


1985 ◽  
Vol 106 ◽  
pp. 251-252
Author(s):  
Y. Sofue ◽  
M. Fujimoto

The distribution of Faraday rotation measure (RM) of extragalactic radio sources shows that a large-scale magnetic field in the Galaxy is oriented along the spiral arms. The field lines change direction from one arm to the next in the inter-arm region.


1998 ◽  
Vol 184 ◽  
pp. 371-372
Author(s):  
B. Hutawarakorn ◽  
R. J. Cohen

Masers provide a direct way of measuring magnetic fields in star-forming regions. OH ground-state masers at 18 cm wavelength exhibit strong circular polarization due to Zeeman splitting. The implied magnetic field strength is typically a few mG, which is sufficient for the field to be dynamically important, e.g. in channelling the observed bipolar outflows. Moreover there are indications that magnetic fields in maser regions are aligned with the large-scale Galactic magnetic field (Reid & Silverstein 1990), and that bipolar molecular outflows are also aligned with the local Galactic magnetic field (Cohen, Rowland & Blair 1984). Some theoretical work in fact suggests that the magnetic field is intimately connected with the origin of the molecular outflow (e.g. Pudritz & Norman 1983; Uchida & Shibata 1985). It is therefore important to investigate the magnetic field configuration in these regions in as much detail as possible.


Author(s):  
L.J Silvers

Magnetic fields are known to reside in many astrophysical objects and are now believed to be crucially important for the creation of phenomena on a wide variety of scales. However, the role of the magnetic field in the bodies that we observe has not always been clear. In certain situations, the importance of a magnetic field has been overlooked on the grounds that the large-scale magnetic field was believed to be too weak to play an important role in the dynamics. In this article I discuss some of the recent developments concerning magnetic fields in stars, planets and accretion discs. I choose to emphasize some of the situations where it has been suggested that weak magnetic fields may play a more significant role than previously thought. At the end of the article, I list some of the questions to be answered in the future.


1993 ◽  
Vol 157 ◽  
pp. 305-310
Author(s):  
Marita Krause

The face-on spiral galaxy IC 342 is known to possess an axisymmetric spiral magnetic field (ASS) with magnetic field lines being orientated inwards everywhere at least in the analyzed radial range between 5 and 13 kpc1 (Krause et al., 1989a; Sokoloff et al., 1992). The ASS field configuration seems to be even with respect to the galactic plane.


1992 ◽  
Vol 9 ◽  
pp. 81-86
Author(s):  
R. Wielebinski

AbstractMagnetic fields are present in every corner of the Universe. The Earth, the Sun and most of the planets are known to possess dipolar magnetic fields. In the Galaxy many individual objects like stars, pulsars, bipolar nebulae and supernova remnants are found to have associated magnetic fields. It seems that the rotation plays a significant role in the ability of a cosmic object to develop a magnetic field. The magnetic field of the Galaxy is observed to be oriented along the galactic plane as evidenced by both optical and radio polarization observations. Radio maps of the Galactic centre reveal poloidal magnetic fields as ‘wisps’ or ‘strings’ around Sagittarius A. Observations of nearby galaxies give us remarkable information about the large-scale magnetic fields in these building blocks of the Universe. Magnetic fields play an important role in the formation of jets of radio galaxies. Further out, in clusters of galaxies, definitive evidence has been given for the existence of intergalactic magnetic fields.


1989 ◽  
Vol 8 (2) ◽  
pp. 187-194 ◽  
Author(s):  
D. K. Milne ◽  
J. L. Caswell ◽  
M. J. Kesteven ◽  
R. F. Haynes ◽  
R. S. Roger

Abstract8.4 GHz linear polarization maps, obtained with the Parkes radio telescope, are presented for six southern supernova remnants. These results are compared with published and unpublished polarization maps at 5 GHz to derive the magnetic field direction and Faraday rotation measure distribution.These results are part of a program to map the magnetic fields in galactic supernova remnants and complement our program to obtain high-resolution maps of galactic SNRs using the Molonglo Observatory Synthesis Telescope; five new Molonglo maps are presented here.


2020 ◽  
Vol 641 ◽  
pp. A121
Author(s):  
Wolfgang Reich ◽  
Patricia Reich ◽  
Xiaohui Sun

Context. In soft X-rays, the Monogem ring is an object with a diameter of 25° located in the Galactic anti-centre. It is believed to be a faint, evolved, local supernova remnant. The ring is also visible in the far-ultraviolet, and a few optical filaments are related. It is not seen at radio wavelengths, as other large supernova remnants are. Aims. We study a narrow about 4.°5 long, faint Hα-filament, G203.7 + 11.5, that is seen towards the centre of the Monogem ring. It causes depolarisation and excessive Faraday rotation of radio polarisation data. Methods. Polarisation observations at λ11 cm and λ21 cm with the Effelsberg 100-m telescope were analysed in addition to WMAP data, extragalactic rotation measures, and Hα data. A Faraday-screen model was applied. Results. From the analysis of the depolarisation properties of the Hα filament, we derived a line-of-sight magnetic field, B||, of 26 ± 5 μG for a distance of 300 pc and an electron density, ne, of 1.6 cm−3. The absolute largest rotation measure of G203.7 + 11.5 is −86 ± 3 rad m−2, where the magnetic field direction has the opposite sign from the large-scale Galactic field. We estimated the average synchrotron emissivity at λ21 cm up to 300 pc distance towards G203.7 + 11.5 to about 1.1 K Tb/kpc, which is higher than typical Milky Way values. Conclusions. The magnetic field within G203.7 + 11.5 is unexpected in direction and strength. Most likely, the filament is related to the Monogem-ring shock, where interactions with ambient clouds may cause local magnetic field reversals. We confirm earlier findings of an enhanced but direction-dependent local synchrotron emissivity.


Sign in / Sign up

Export Citation Format

Share Document