scholarly journals Static versus Dynamical Cosmic-ray Halos

1991 ◽  
Vol 144 ◽  
pp. 359-368 ◽  
Author(s):  
Frank C. Jones

The dynamical halo of the Galaxy offers a natural explanation for the form of the variation of cosmic-ray path length with energy. The variation above 1 GeV per nucleon can be understood as due to the variation of the diffusion coefficient, and hence the resident time in the galaxy, with energy. The flattening of the curve below 1 GeV per nucleon is seen to mark a transition to a convection dominated regime where the variation of the diffusion coefficient is no longer a determining factor. It is possible that the random motion of the cosmic rays about the galaxy that prevents us from seeing their sources in a clear manner may enable us to extract information about the galaxy at large and learn something about its large scale motions.

1976 ◽  
Vol 3 (1) ◽  
pp. 1-6 ◽  
Author(s):  
W. R. Webber

In recent years observations of γ-ray emission from the disk of the galaxy have provided a new opportunity for research into the structure of the spiral arms of our own galaxy. In Figure 1 we show a map of the structure of the disk of the galaxy as observed for γ-rays of energy > 100 MeV by the SAS-2 satellite (Fichtel et al. 1975). The angular resolution of these measurements is ~ 3°, and besides two point sources at l = 190° and 265° several features related to the spiral structure of the galaxy are evident in the data. Most of these γ-rays are believed to arise from the decay of π° mesons produced by the nuclear interactions of cosmic rays (mostly protons) with the ambient interstellar gas. As a result, the γ-ray fluxes represent a measure of the line of sight integral of the product of the cosmic ray density NCR and the interstellar matter density N1


2020 ◽  
Vol 493 (2) ◽  
pp. 2817-2833 ◽  
Author(s):  
Mark R Krumholz ◽  
Roland M Crocker ◽  
Siyao Xu ◽  
A Lazarian ◽  
M T Rosevear ◽  
...  

ABSTRACT Starburst galaxies are efficient γ-ray producers, because their high supernova rates generate copious cosmic ray (CR) protons, and their high gas densities act as thick targets off which these protons can produce neutral pions and thence γ-rays. In this paper, we present a first-principles calculation of the mechanisms by which CRs propagate through such environments, combining astrochemical models with analysis of turbulence in weakly ionized plasma. We show that CRs cannot scatter off the strong large-scale turbulence found in starbursts, because efficient ion-neutral damping prevents such turbulence from cascading down to the scales of CR gyroradii. Instead, CRs stream along field lines at a rate determined by the competition between streaming instability and ion-neutral damping, leading to transport via a process of field line random walk. This results in an effective diffusion coefficient that is nearly energy independent up to CR energies of ∼1 TeV. We apply our computed diffusion coefficient to a simple model of CR escape and loss, and show that the resulting γ-ray spectra are in good agreement with the observed spectra of the starbursts NGC 253, M82, and Arp 220. In particular, our model reproduces these galaxies’ relatively hard GeV γ-ray spectra and softer TeV spectra without the need for any fine-tuning of advective escape times or the shape of the CR injection spectrum.


2019 ◽  
Vol 622 ◽  
pp. A9 ◽  
Author(s):  
A. Miskolczi ◽  
V. Heesen ◽  
C. Horellou ◽  
D.-J. Bomans ◽  
R. Beck ◽  
...  

Context. Low-frequency radio continuum studies of star-forming edge-on galaxies can help to further understand how cosmic-ray electrons (CRe) propagate through the interstellar medium into the halo and how this is affected by energy losses and magnetic fields. Aims. Observations with the Very Large Array (VLA) from Continuum Haloes in Nearby Galaxies – an EVLA Survey (CHANG-ES) are combined with those with the LOw Frequency ARray (LOFAR) from the LOFAR Two-metre Sky Survey (LoTSS ) to identify the prevailing mode of cosmic-ray transport in the edge-on spiral galaxy NGC 3556. Methods. We mapped the radio spectral index, magnetic field strength, and orientation using VLA 1.5 and 6 GHz and LOFAR 144 MHz data, and we fit 1D cosmic-ray propagation models to these maps using SPINNAKER (Spectral Index Numerical Analysis of K(c)osmic-ray electron radio emission) and its interactive wrapper SPINTERACTIVE. Results. We find that the spectral index in the galactic midplane is, as expected for young CRe, α ≈ −0.7 and steepens towards the halo of the galaxy as a consequence of spectral ageing. The intensity scale heights are about 1.4 and 1.9 kpc for the thin disc, and 3.3 and 5.9 kpc for the thick disc at 1.5 GHz and 144 MHz, respectively. While pure diffusion cannot explain our data, advection can, particularly if we assume a linearly accelerating wind. Our best-fitting model has an initial speed of 123 km s−1 in the galactic midplane and reaches the escape velocity at heights between 5 kpc and 15 kpc above the disc, depending on the assumed dark matter halo of the galaxy. This galactic wind scenario is corroborated by the existence of vertical filaments seen both in the radio continuum and in H α in the disc-halo interface and of a large-scale reservoir of hot, X-ray emitting gas in the halo. Conclusions. Radio haloes show the existence of galactic winds, possibly driven by cosmic rays, in typical star-forming spiral galaxies.


1967 ◽  
Vol 31 ◽  
pp. 337-354 ◽  
Author(s):  
J. E. Baldwin

In this review of the non-thermal continuum radiation from the Galaxy, the following issues are discussed:(1)The non-thermal continuum radiation in the disk.(2)Evidence for spiral arms in the non-thermal continuum, and the origin of the radiation in sources or in large-scale magnetic fields.(3)The nature of the spurs extending to high galactic latitudes.(4)Evidence for the existence or absence of a radio halo.(5)The galactic radio spectrum and its relation to the cosmic-ray electron spectrum.(6)Supernova remnants, their structure and spectra.(7)A comparison of the Galaxy with other normal galaxies.(8)Observational needs.


1968 ◽  
Vol 46 (10) ◽  
pp. S627-S632 ◽  
Author(s):  
R. Ramaty ◽  
R. E. Lingenfelter

Assuming that cosmic-ray deuterons and helium-3 nuclei are of secondary origin, we show that a unique determination of both the cosmic-ray path-length and the residual interplanetary field modulation at solar minimum may be made from a comparison of the calculated and measured intensities of these two nuclei. This determination does not depend on any assumptions regarding either the source spectra or the unmodulated proton to alpha particle ratio of the primary cosmic rays. The production of deuterium and helium-3 by cosmic-ray interactions in the galaxy is calculated considering energy-dependent cross sections, interaction kinematics, and demodulated cosmic-ray spectra. The resulting flux at the earth is obtained by taking into account leakage from the galaxy, ionization losses, nuclear breakup, and modulation. From a comparison of these calculations with the measured deuterium and helium-3 intensities at the earth, we conclude that within the experimental uncertainties all the data can be understood in terms of an energy-independent cosmic-ray path-length of 4 ± 1 g/cm2 and a residual interplanetary field modulation at solar minimum of the form exp(–η/Pβ) with η = 0.4 ± 0.1 BV, where P and β are the rigidity and velocity.


2019 ◽  
Vol 488 (2) ◽  
pp. 2068-2078 ◽  
Author(s):  
V Bresci ◽  
E Amato ◽  
P Blasi ◽  
G Morlino

ABSTRACT The ratio between secondary and primary cosmic ray (CR) particles is the main source of information about CR propagation in the Galaxy. Primary CRs are thought to be accelerated mainly in supernova remnant shocks and then released in the interstellar medium. Here, they produce secondary particles by occasional collisions with interstellar matter. As a result, the ratio between the fluxes of secondary and primary particles carries information about the amount of matter CRs have encountered during their journey from their sources to the Earth. Recent measurements by AMS-02 revealed an unexpected behaviour of two main secondary-to-primary ratios, the Boron-to-Carbon ratio and the antiproton-to-proton ratio. In this work, we discuss how such anomalies may reflect the action of two phenomena that are usually overlooked, namely the fact that some fraction of secondary particles can be produced within the acceleration region, and the non-negligible probability that secondary particles encounter an accelerator (and are re-accelerated) during propagation. Both effects must be taken into account in order to correctly extract information about CR transport from secondary-to-primary ratios.


1991 ◽  
Vol 144 ◽  
pp. 187-196
Author(s):  
W. Reich

Changes of the cosmic ray electron spectrum throughout the Galaxy have been found, based on the comparison of large-scale radio continuum surveys. These observations are not compatible with the assumption of a static Galactic halo, but indicate the existence of a Galactic wind. Galactic plane surveys reveal sources of cosmic ray electrons in the Galactic disk. Recent studies of the population of radio sources show no evidence for a large number of compact Galactic non-thermal sources. Most of the extended sources are probably HII-regions. Relatively few new supernova remnants (SNRs) with low surface brightness could be identified. Most of the non-thermal emission in the disk-halo interface seems diffuse or unresolved, even at arcmin angular resolution.


2020 ◽  
Vol 15 (S359) ◽  
pp. 188-189
Author(s):  
Daniela Hiromi Okido ◽  
Cristina Furlanetto ◽  
Marina Trevisan ◽  
Mônica Tergolina

AbstractGalaxy groups offer an important perspective on how the large-scale structure of the Universe has formed and evolved, being great laboratories to study the impact of the environment on the evolution of galaxies. We aim to investigate the properties of a galaxy group that is gravitationally lensing HELMS18, a submillimeter galaxy at z = 2.39. We obtained multi-object spectroscopy data using Gemini-GMOS to investigate the stellar kinematics of the central galaxies, determine its members and obtain the mass, radius and the numerical density profile of this group. Our final goal is to build a complete description of this galaxy group. In this work we present an analysis of its two central galaxies: one is an active galaxy with z = 0.59852 ± 0.00007, while the other is a passive galaxy with z = 0.6027 ± 0.0002. Furthermore, the difference between the redshifts obtained using emission and absorption lines indicates an outflow of gas with velocity v = 278.0 ± 34.3 km/s relative to the galaxy.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4804
Author(s):  
Marcin Piekarczyk ◽  
Olaf Bar ◽  
Łukasz Bibrzycki ◽  
Michał Niedźwiecki ◽  
Krzysztof Rzecki ◽  
...  

Gamification is known to enhance users’ participation in education and research projects that follow the citizen science paradigm. The Cosmic Ray Extremely Distributed Observatory (CREDO) experiment is designed for the large-scale study of various radiation forms that continuously reach the Earth from space, collectively known as cosmic rays. The CREDO Detector app relies on a network of involved users and is now working worldwide across phones and other CMOS sensor-equipped devices. To broaden the user base and activate current users, CREDO extensively uses the gamification solutions like the periodical Particle Hunters Competition. However, the adverse effect of gamification is that the number of artefacts, i.e., signals unrelated to cosmic ray detection or openly related to cheating, substantially increases. To tag the artefacts appearing in the CREDO database we propose the method based on machine learning. The approach involves training the Convolutional Neural Network (CNN) to recognise the morphological difference between signals and artefacts. As a result we obtain the CNN-based trigger which is able to mimic the signal vs. artefact assignments of human annotators as closely as possible. To enhance the method, the input image signal is adaptively thresholded and then transformed using Daubechies wavelets. In this exploratory study, we use wavelet transforms to amplify distinctive image features. As a result, we obtain a very good recognition ratio of almost 99% for both signal and artefacts. The proposed solution allows eliminating the manual supervision of the competition process.


Sign in / Sign up

Export Citation Format

Share Document