scholarly journals Effects of re-acceleration and source grammage on secondary cosmic rays spectra

2019 ◽  
Vol 488 (2) ◽  
pp. 2068-2078 ◽  
Author(s):  
V Bresci ◽  
E Amato ◽  
P Blasi ◽  
G Morlino

ABSTRACT The ratio between secondary and primary cosmic ray (CR) particles is the main source of information about CR propagation in the Galaxy. Primary CRs are thought to be accelerated mainly in supernova remnant shocks and then released in the interstellar medium. Here, they produce secondary particles by occasional collisions with interstellar matter. As a result, the ratio between the fluxes of secondary and primary particles carries information about the amount of matter CRs have encountered during their journey from their sources to the Earth. Recent measurements by AMS-02 revealed an unexpected behaviour of two main secondary-to-primary ratios, the Boron-to-Carbon ratio and the antiproton-to-proton ratio. In this work, we discuss how such anomalies may reflect the action of two phenomena that are usually overlooked, namely the fact that some fraction of secondary particles can be produced within the acceleration region, and the non-negligible probability that secondary particles encounter an accelerator (and are re-accelerated) during propagation. Both effects must be taken into account in order to correctly extract information about CR transport from secondary-to-primary ratios.

Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


1976 ◽  
Vol 3 (1) ◽  
pp. 1-6 ◽  
Author(s):  
W. R. Webber

In recent years observations of γ-ray emission from the disk of the galaxy have provided a new opportunity for research into the structure of the spiral arms of our own galaxy. In Figure 1 we show a map of the structure of the disk of the galaxy as observed for γ-rays of energy > 100 MeV by the SAS-2 satellite (Fichtel et al. 1975). The angular resolution of these measurements is ~ 3°, and besides two point sources at l = 190° and 265° several features related to the spiral structure of the galaxy are evident in the data. Most of these γ-rays are believed to arise from the decay of π° mesons produced by the nuclear interactions of cosmic rays (mostly protons) with the ambient interstellar gas. As a result, the γ-ray fluxes represent a measure of the line of sight integral of the product of the cosmic ray density NCR and the interstellar matter density N1


This lecture is an attempt to review current knowledge about certain terrestrial phenomena with the twofold purpose: ( a ) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment, ( b ) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions, etc., are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. As regards astronomical effects on Earth: (i) There is a good case - not yet overwhelming - for the currently widely accepted view that fluctuations of glaciation within an ice-epoch result from changes of insolation accompanying fluctuations of the Earth’s motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun’s motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. (ii) Impacts of planetesimals may be more important than hitherto recognized. Among astronomical results regarding the Sun, while the intensity of solar ‘activity’ is variable, terrestrial effects provide no confirmation that the Sun is a ‘variable star’. Regarding the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed; certain concepts that would call for consideration in any extended review are mentioned.


Recent experiments have extended the knowledge of the flux and energy spectra of individual cosmic-ray components to much higher energies than had previously been accessible. Both electron and nuclear components show a behaviour at high energy which is unexpected, and which carries information regarding the sources and the propagation of particles between sources and observer. Electromagnetic interactions which are suffered by the electrons in interstellar space should steepen their spectrum, a steepening that would reveal the average lifetime a cosmic-ray particle spends in the galaxy. Measurements up to 1000 GeV show no such steepening. It was discovered that the composition of the nuclear species which is now measured up to 100 GeV/nucleon changes with energy. This change indicates traversal of less interstellar matter by the high energy particles than by those of lower energy. We discuss the experimental evidence and its implication.


1968 ◽  
Vol 1 (3) ◽  
pp. 112-113 ◽  
Author(s):  
W.R. Webber

We have extended our recent measurements on the extraterrestrial cosmic ray electron spectrum, this spectrum now being determined over the energy range from ~15 MeV to 6 GeV. The extraterrestrial electron intensity between 15 MeV and 200 MeV can be determined unambiguously by studying the diurnal variation of these particles. We have also measured the effects of the 11-year solar modulation on the electrons, thus enabling the electron spectrum observed near the Earth to be extrapolated to the local region of the spiral arm. It is the purpose of this paper to relate these measurements to: (i) calculations of ‘secondary’ electrons produced by cosmic ray nuclei moving in the Galaxy; and(ii) the observations of non-thermal radio emission from disk components of the Galaxy.


2006 ◽  
Vol 23 (3) ◽  
pp. 129-134
Author(s):  
Mahmud Bahmanabadi ◽  
Mehdi Khakian Ghomi ◽  
Farzaneh Sheidaei ◽  
Jalal Samimi

AbstractWe have monitored multi-TeV cosmic rays by a small air shower array in Tehran (35°43′ N, 51°20′ E, 1200 m = 890 g cm−2). More than 1.1 × 106 extensive air shower events were recorded. These observations enabled us to analyse sidereal variation of the galactic cosmic ray intensity. The observed sidereal daily variation is compared to the expected variation which includes the Compton–Getting effect due to the motion of the earth in the Galaxy. In addition to the Compton–Getting effect, an anisotropy has been observed which is due to a unidirectional anisotropy of cosmic ray flow along the Galactic arms.


1991 ◽  
Vol 144 ◽  
pp. 359-368 ◽  
Author(s):  
Frank C. Jones

The dynamical halo of the Galaxy offers a natural explanation for the form of the variation of cosmic-ray path length with energy. The variation above 1 GeV per nucleon can be understood as due to the variation of the diffusion coefficient, and hence the resident time in the galaxy, with energy. The flattening of the curve below 1 GeV per nucleon is seen to mark a transition to a convection dominated regime where the variation of the diffusion coefficient is no longer a determining factor. It is possible that the random motion of the cosmic rays about the galaxy that prevents us from seeing their sources in a clear manner may enable us to extract information about the galaxy at large and learn something about its large scale motions.


The masses of the secondary particles emitted from disintegrations produced by cosmic-ray protons of energy greater than 2 GeV have been determined by observations on the grain density and scattering of their tracks in photographic emulsions. It has thus been possible to determine the yield of the heavy charged mesons with mass between 900 and 1400 m e , as a function of the energy of the primary particles. Among 325 secondary particles which produce tracks with grain density between 1⋅07 and 2⋅0 times the minimum value, twenty heavy mesons have been identified. The statistical distribution in the measured values of their mass is consistent with a unique value of 1210±40 m e . The total observed proper time of flight of these particles is 2⋅9 x 10 -10 s; no example of decay 'in flight’ has yet been observed. The rate of production of these heavy mesons, referred to as K -particles, has been compared with the frequency with which heavy mesons are observed to decay at rest; the ratio is consistent with the estimated lifetime of the K -particles. In the disintegrations produced by primary particles of energy greater than ~ 20 GeV, approximately equal energy goes into production of π-and K -particles. The yield of K -particles at a primary energy of 2 to 3 GeV is estimated to be a few per cent per primary interaction. The results suggest th at not only π-mesons but also K -mesons are ‘heavy quanta’ associated with the nuclear field. If charged mesons of mass between 276 and 900 m e are created directly in showers, they occur with a frequency < 1 % of the π-particles.


1999 ◽  
Vol 193 ◽  
pp. 205-217
Author(s):  
Roland Diehl

Gamma-rays from astrophysical sources testify energetic processes such as nucleosynthesis and cosmic ray collisions. Gamma-rays are observable from throughout the Galaxy, unattenuated by interstellar matter, provided their intensity exceeds the current instrumental sensitivity level (∼ 10−5ph cm−2s−1 at 1 MeV). Massive stars are at the origin of relevant sources: The all-sky image in the 1.809 MeV γ-ray line from radioactive 26Al traces nucleosynthesis throughout the Galaxy. The structure of this emission along the plane of the Galaxy suggests massive stars as dominating sources of this radioactivity. Discrimination of the contribution from core collapse supernova against that from WR-wind ejected hydrostatic nucleosynthesis products may be obtained from 60Fe γ-ray line observations, or from spatial-profile consequences of the metallicity dependence of 26Al production in theories for both source sites. As a single source, the nearest WR star in the γ2 Vel system is found to eject less 26Al into interstellar space than current theories predict. However, a more adequate comparison must be based on a time-dependent 26Al light-curve of the system. Furthermore, continuum γ-ray production in WR binaries through wind-wind interaction, and constraints on the low-energy cosmic ray origin in WR winds through characteristic nuclear deexcitation line studies are targets of research. Studies stimulated by COMPTEL'S 3–7 MeV excess report from the Orion region indicate that the γ-ray line measurements could separate the origins from supernova ejecta and wind material. The COMPTEL Orion result is now attributed chiefly to an instrumental artifact, and has been withdrawn. Nevertheless, the search for MeV emission from massive star clusters, as well as from interacting binaries such as WR 140, promises a unique test of particle acceleration scenarios related to the source mechanism for cosmic ray production.


1968 ◽  
Vol 46 (10) ◽  
pp. S627-S632 ◽  
Author(s):  
R. Ramaty ◽  
R. E. Lingenfelter

Assuming that cosmic-ray deuterons and helium-3 nuclei are of secondary origin, we show that a unique determination of both the cosmic-ray path-length and the residual interplanetary field modulation at solar minimum may be made from a comparison of the calculated and measured intensities of these two nuclei. This determination does not depend on any assumptions regarding either the source spectra or the unmodulated proton to alpha particle ratio of the primary cosmic rays. The production of deuterium and helium-3 by cosmic-ray interactions in the galaxy is calculated considering energy-dependent cross sections, interaction kinematics, and demodulated cosmic-ray spectra. The resulting flux at the earth is obtained by taking into account leakage from the galaxy, ionization losses, nuclear breakup, and modulation. From a comparison of these calculations with the measured deuterium and helium-3 intensities at the earth, we conclude that within the experimental uncertainties all the data can be understood in terms of an energy-independent cosmic-ray path-length of 4 ± 1 g/cm2 and a residual interplanetary field modulation at solar minimum of the form exp(–η/Pβ) with η = 0.4 ± 0.1 BV, where P and β are the rigidity and velocity.


Sign in / Sign up

Export Citation Format

Share Document