scholarly journals Long Baseline Interferometric Observations of Circumstellar Dust Shells at 11 Microns

1994 ◽  
Vol 158 ◽  
pp. 383-386
Author(s):  
W.C. Danchi ◽  
L. Greenhill ◽  
M. Bester ◽  
C.G. Degiacomi ◽  
C.H. Townes ◽  
...  

The spatial distribution of dust around a sample of well-known late-type stars has been studied with the Infrared Spatial Interferometer (ISI) located at Mt. Wilson. Currently operating with a single baseline as a heterodyne interferometer at 11.15 μm, the ISI has obtained visibility curves of these stars. Radiative transfer modeling of the visibility curves has yielded estimates of the inner radii of the dust shells, the optical depth at 11 μm, and the temperature of the dust at the inner radii. For stars in which the dust is resolved, estimates of the stellar diameter and temperature can also be made. Broadly speaking two classes of stars have been found. One class has inner radii of their dust shells very close to the photospheres of the stars themselves (3–5 stellar radii) and at a higher temperature (~ 1200 K) than previously measured. This class includes VY CMa, NML Tau, IRC +10216, and o Ceti. For the latter two the visibility curves change with the luminosity phase of the star and new dust appears to form at still smaller radii during minimum luminosity. The second class of stars has dust shells with substantially larger inner radii and very little dust close to the stars, and includes α Ori, α Sco, α Her, R Leo, and χ Cyg. This indicates sporadic production of dust and no dust formation within the last several decades.

1984 ◽  
Vol 105 ◽  
pp. 273-277
Author(s):  
K.A. van der Hucht ◽  
P.M. Williams ◽  
P.S. Thé

In a recent IR photometric survey of late-type WC and WN stars, it was discovered that not only most WC8-10 stars have circumstellar dust shells, but that two extreme late-type WN stars also have strong IR excesses from circumstellar dust. The latter shells appear to have significantly different density distributions. In this paper the possibility of an evolutionary sequence is suggested.


1986 ◽  
Vol 222 (2) ◽  
pp. 273-286 ◽  
Author(s):  
M. Rowan-Robinson ◽  
T. D. Lock ◽  
D. W. Walker ◽  
S. Harris

2008 ◽  
Vol 4 (S256) ◽  
pp. 454-458
Author(s):  
Keiichi Ohnaka ◽  
Thomas Driebe ◽  
Karl-Heinz Hofmann ◽  
Gerd Weigelt ◽  
Markus Wittkowski

AbstractWe present mid-IR long-baseline interferometric observations of the red supergiant WOH G64 in the Large Magellanic Cloud with MIDI at the ESO's Very Large Telescope Interferometer (VLTI). Our MIDI observations of WOH G64 are the first VLTI observations to spatially resolve an individual stellar source in an extragalactic system. Our 2-D radiative transfer modeling reveals the presence of a geometrically and optically thick torus seen nearly pole-on. This model brings WOH G64 in much better agreement with the current evolutionary tracks for a 25 M⊙ star — about a half of the previous estimate of 40 M⊙ — and solves the serious discrepancy between theory and observation which existed for this object.


2020 ◽  
Vol 644 ◽  
pp. A139
Author(s):  
Hans-Peter Gail ◽  
Akemi Tamanai ◽  
Annemarie Pucci ◽  
Ralf Dohmen

Aims. We study the growth of dust in oxygen-rich stellar outflows in order to find out to which extent dust growth models can quantitatively reconcile with the quantities and nature of dust as derived from observations of the infrared emission from circumstellar dust shells. Methods. We use a set of nine well-observed massive supergiants with optically thin dust shells as testbeds because of the relatively simple properties of the outflows from massive supergiants, contrary to the case of AGB stars. Models of the infrared emission from their circumstellar dust shells are compared to their observed infrared spectra to derive the essential parameters that rule dust formation in the extended envelope of these stars. The results are compared with a model for silicate dust condensation. Results. For all objects, the infrared emission in the studied wavelength range, between 6 and 25 μm, can be reproduced rather well by a mixture of non-stoichiometric iron-bearing silicates, alumina, and metallic iron dust particles. For three objects (μ Cep, RW Cyg, and RS Per), the observed spectra can be sufficiently well reproduced by a stationary and (essentially) spherically symmetric outflow in the instantaneous condensation approximation. For these objects, the temperature at the onset of massive silicate dust growth is of the order of 920 K and the corresponding outflow velocity of the order of the sound velocity. This condensation temperature is only somewhat below the vapourisation temperature of the silicate dust and suggests that the silicate dust grows on the corundum dust grains that formed well inside of the silicate dust shell at a much higher temperature. The low expansion velocity at the inner edge of the silicate dust shell further suggests that, for these supergiants, the region inside the silicate dust shell has an only subsonic average expansion velocity, though a high degree of supersonic turbulence is indicated by the widths of spectral lines. Conclusions. Our results suggest that for the two major problems of dust formation in stellar outflows, that is (i) formation of seed nuclei and (ii) their growth to macroscopic dust grains, we are gradually coming close to a quantitative understanding of the second item.


Author(s):  
W. C. Danchi ◽  
L. Greenhill ◽  
M. Bester ◽  
C. G. Degiacomi ◽  
C. H. Townes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document