stellar outflows
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 277
Author(s):  
Maxim V. Barkov ◽  
Valenti Bosch-Ramon

Binary systems that host a massive star and a non-accreting pulsar can be powerful non-thermal emitters. The relativistic pulsar wind and the non-relativistic stellar outflows interact along the orbit, producing ultrarelativistic particles that radiate from radio to gamma rays. To properly characterize the physics of these sources, and better understand their emission and impact on the environment, careful modeling of the outflow interactions, spanning a broad range of spatial and temporal scales, is needed. Full three-dimensional approaches are very computationally expensive, but simpler approximate approaches, while still realistic at the semi-quantitative level, are available. We present here the results of calculations done with a quasi three-dimensional scheme to compute the evolution of the interacting flows in a region spanning in size up to a thousand times the size of the binary. In particular, we analyze for the first time the role of different eccentricities in the large scale evolution of the shocked flows. We find that the higher the eccentricity, the closer the flows behave like a one-side outflow, which becomes rather collimated for eccentricity values ≳0.75. The simulations also unveil that the pulsar and the stellar winds become fully mixed within the grid for low eccentricity systems, presenting a more stochastic behavior at large scales than in the highly eccentric systems.


2020 ◽  
Vol 644 ◽  
pp. A139
Author(s):  
Hans-Peter Gail ◽  
Akemi Tamanai ◽  
Annemarie Pucci ◽  
Ralf Dohmen

Aims. We study the growth of dust in oxygen-rich stellar outflows in order to find out to which extent dust growth models can quantitatively reconcile with the quantities and nature of dust as derived from observations of the infrared emission from circumstellar dust shells. Methods. We use a set of nine well-observed massive supergiants with optically thin dust shells as testbeds because of the relatively simple properties of the outflows from massive supergiants, contrary to the case of AGB stars. Models of the infrared emission from their circumstellar dust shells are compared to their observed infrared spectra to derive the essential parameters that rule dust formation in the extended envelope of these stars. The results are compared with a model for silicate dust condensation. Results. For all objects, the infrared emission in the studied wavelength range, between 6 and 25 μm, can be reproduced rather well by a mixture of non-stoichiometric iron-bearing silicates, alumina, and metallic iron dust particles. For three objects (μ Cep, RW Cyg, and RS Per), the observed spectra can be sufficiently well reproduced by a stationary and (essentially) spherically symmetric outflow in the instantaneous condensation approximation. For these objects, the temperature at the onset of massive silicate dust growth is of the order of 920 K and the corresponding outflow velocity of the order of the sound velocity. This condensation temperature is only somewhat below the vapourisation temperature of the silicate dust and suggests that the silicate dust grows on the corundum dust grains that formed well inside of the silicate dust shell at a much higher temperature. The low expansion velocity at the inner edge of the silicate dust shell further suggests that, for these supergiants, the region inside the silicate dust shell has an only subsonic average expansion velocity, though a high degree of supersonic turbulence is indicated by the widths of spectral lines. Conclusions. Our results suggest that for the two major problems of dust formation in stellar outflows, that is (i) formation of seed nuclei and (ii) their growth to macroscopic dust grains, we are gradually coming close to a quantitative understanding of the second item.


2020 ◽  
Vol 493 (3) ◽  
pp. 4463-4517 ◽  
Author(s):  
Tho Do-Duy ◽  
Christopher M Wright ◽  
Takuya Fujiyoshi ◽  
Alistair Glasse ◽  
Ralf Siebenmorgen ◽  
...  

ABSTRACT Utilizing several instruments on 4–8 m telescopes, we have observed a large sample of objects in the mid-infrared (8–13 μm). These comprise a few evolved stars, multiple envelopes of embedded young stellar objects (YSOs) or compact H-II regions, and several sightlines through the interstellar medium (ISM). The latter is where dust resides – and is potentially modified – between its formation in evolved stellar outflows and deposition in molecular clouds. In most objects, we detect not only the well-known 9.7 μm absorption feature of amorphous silicates but also a second absorption band around 11.1 μm whose carrier is attributed to crystalline forsterite. We propose that crystalline silicates are essentially ubiquitous in the ISM and earliest phases of star formation, and are evolutionary precursors to T-Tauri and Herbig stars where such silicates have been commonly found. Modelling shows that in most YSOs, H-II regions and ISM cases, the forsterite mass fraction is between 1 and 2 per cent, suggesting that the younger phases inherit their abundance from the ISM. However, several sources show much stronger features (abundances ≥3 per cent). This suggests that significant processing, perhaps crystallization by thermal annealing, occurs early on in star formation. Most intriguing is the first detection of crystalline silicate in the diffuse ISM. We propose that our observed abundance is consistent with a mass fraction of crystalline silicates of 10–20 per cent injected into the ISM, along with commonly accepted lifetimes against their destruction, but only if cosmic ray-induced amorphization is insignificant over a few Giga years.


2019 ◽  
Vol 489 (1) ◽  
pp. 268-281
Author(s):  
Nathan Smith ◽  
Jon A Morse

ABSTRACT We present the first images of the nebula around η Carinae obtained with the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST), including an ultraviolet (UV) image in the F280N filter that traces Mg ii emission, plus contemporaneous imaging in the F336W, F658N, and F126N filters that trace near-UV continuum, [N ii], and [Fe ii], respectively. The F336W and F658N images are consistent with previous images in these filters, and F126N shows that for the most part, [Fe ii] λ12567 traces clumpy shocked gas seen in [N ii]. The F280N image, however, reveals Mg ii emission from structures that have not been seen in any previous line or continuum images of η Carinae. This image shows diffuse Mg ii emission immediately outside the bipolar Homunculus nebula in all directions, but with the strongest emission concentrated over the poles. The diffuse structure with prominent radial streaks, plus an anticorrelation with ionized tracers of clumpy shocked gas, leads us to suggest that this is primarily Mg ii resonant scattering from unshocked, neutral atomic gas. We discuss the implied structure and geometry of the Mg ii emission, and its relation to the Homunculus lobes and various other complex nebular structures. An order of magnitude estimate of the neutral gas mass traced by Mg ii is 0.02 M⊙, with a corresponding kinetic energy around 1047 erg. This may provide important constraints on polar mass-loss in the early phases of the great eruption. We argue that the Mg ii line may be an excellent tracer of significant reservoirs of freely expanding, unshocked, and otherwise invisible neutral atomic gas in a variety of stellar outflows.


2018 ◽  
Vol 14 (A30) ◽  
pp. 406-407
Author(s):  
David Gobrecht ◽  
John Plane ◽  
Stefan Bromley ◽  
Leen Decin
Keyword(s):  

2017 ◽  
Vol 13 (S336) ◽  
pp. 281-282
Author(s):  
C. J. Cyganowski ◽  
D. Hannaway ◽  
C. L. Brogan ◽  
T. R. Hunter ◽  
Q. Zhang

AbstractWe report the discovery of widespread millimeter-wavelength Class I methanol maser emission associated with protostellar molecular outflows in the massive (proto)cluster G11.92−0.61. Our ~0.5″-resolution SMA and ALMA observations of the 229 GHz and 278 GHz Class I transitions reveal seven and twelve candidate masers, respectively: all 229 GHz masers have 278 GHz counterparts, and five are also coincident with 44 GHz Class I masers previously detected with the VLA. For paired masers, the peak intensities at 229 GHz and 278 GHz are correlated. We also find tentative evidence for a correlation between the strength of millimeter-wavelength Class I maser emission and the energy of the associated molecular outflow.


2017 ◽  
Vol 13 (S332) ◽  
pp. 43-46
Author(s):  
M. Van de Sande ◽  
J. O. Sundqvist ◽  
T. J. Millar ◽  
L. Decin

AbstractThe molecular composition of the stellar outflows of AGB stars is determined by the stellar elemental carbon-to-oxygen abundance ratio, together with the physical circumstances in the innermost region of the outflow. Near the stellar surface, thermal equilibrium (TE) can be assumed. This leads to a certain molecular composition with a O- or C-rich signature. However, several molecular species have been detected that are not expected to be present in the inner region under the assumption of TE chemistry. As a solution to explain the presence of these unexpected species, non-equilibrium chemistry in the inner region of the outflow has been proposed. The outflows of AGB stars are generally not spherically symmetric or homogeneous, which influences the penetration of interstellar UV photons throughout the outflow. We investigate the effect of a clumpy, non-homogeneous outflow on the composition of the inner region by introducing a simple porosity formalism in our chemical model.


Science ◽  
2014 ◽  
Vol 346 (6207) ◽  
pp. 310-312
Author(s):  
M. M. Moerchen
Keyword(s):  

2014 ◽  
Vol 16 (10) ◽  
pp. 105008 ◽  
Author(s):  
A Noriega-Crespo ◽  
A C Raga ◽  
A Moro-Martín ◽  
N Flagey ◽  
S J Carey

2013 ◽  
Vol 110 (45) ◽  
pp. 18081-18086 ◽  
Author(s):  
P. W. Dunk ◽  
J.-J. Adjizian ◽  
N. K. Kaiser ◽  
J. P. Quinn ◽  
G. T. Blakney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document