scholarly journals A Photometric Survey of Field Stars in the Large Magellanic Cloud: Probing its Star-Formation History

1999 ◽  
Vol 190 ◽  
pp. 343-344 ◽  
Author(s):  
T. A. Smecker-Hane ◽  
J. S. Gallagher ◽  
Andrew Cole ◽  
P. B. Stetson ◽  
E. Tolstoy

The Large Magellanic Cloud (LMC) is unique among galaxies in the Local Group in that it is the most massive non-spiral, is relatively gas-rich, and is actively forming stars. Determining its star-formation rate (SFR) as a function of time will be a cornerstone in our understanding of galaxy evolution. The best method of deriving a galaxy's past SFR is to compare the densities of stars in a color-magnitude diagram (CMD), a Hess diagram, with model Hess diagrams. The LMC has a complex stellar population with ages ranging from 0 to ~ 14 Gyr and metallicities from −2 ≲ [Fe/H] ≲ −0.4, and deriving its SFR and simultaneously constraining model input parameters (distance, age-metallicity relation, reddening, and stellar models) requires well-populated CMDs that span the magnitude range 15 ≤ V ≤ 24. Although existing CMDs of field stars in the LMC show tantalizing evidence for a significant burst of star formation that occurred ~ 3 Gyr ago (for examples, see Westerlund et al. 1995; Vallenari et al. 1996; Elson, et al. 1997; Gallagher et al. 1999, and references therein), estimates of the enhancement in the SFR vary from factors of 3 to 50. This uncertainty is caused by the relatively large photometric errors that plague crowded ground-based images, and the small number statistics that plague CMDs created from single Wide Field Planetary Camera 2 (WFPC2) images.

1999 ◽  
Vol 192 ◽  
pp. 72-78
Author(s):  
Jason Harris ◽  
Dennis Zaritsky ◽  
Eva K. Grebel ◽  
Ian Thompson

We are developing an algorithm to determine the star formation history (SFH) of a mixed stellar population. We will apply the algorithm to hundreds of regions in our Magellanic Clouds Photometric Survey data and reconstruct the spatially resolved star formation history of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In this paper, we demonstrate the algorithm on a typical region in the LMC, focussing on the obstacles and challenges facing us in attempting to reliably extract the SFH from photometric data.


2008 ◽  
Vol 4 (S256) ◽  
pp. 281-286
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Antonio Aparicio ◽  
Peter B. Stetson ◽  
Sebastián L. Hidalgo

AbstractBased on the quantitative analysis of a set of wide-field color—magnitude diagrams reaching the old main sequence-turnoffs, we present new LMC star-formation histories, and their variation with galactocentric distance. Some coherent features are found, together with systematic variations of the star-formation history among the three fields analyzed. We find two main episodes of star formation in all three fields, from 1 to 4 and 7 to 13 Gyr ago, with relatively low star formation around ≃ 4–7 Gyr ago. The youngest age in each field gradually increases with galactocentric radius; in the innermost field, LMC 0514–6503, an additional star formation event younger than 1 Gyr is detected, with star formation declining, however, in the last ≃ 200 Myr. The population is found to be older on average toward the outer part of the galaxy, although star formation in all fields seems to have started around 13 Gyr ago.


1997 ◽  
Vol 109 ◽  
pp. 292 ◽  
Author(s):  
B. W. Stappers ◽  
J. R. Mould ◽  
K. M. Sebo ◽  
J. A. Holtzman ◽  
J. S., III Gallagher ◽  
...  

2009 ◽  
Vol 5 (S262) ◽  
pp. 353-354
Author(s):  
Enrico V. Held ◽  
Eline Tolstoy ◽  
Luca Rizzi ◽  
Mary Cesetti ◽  
Andrew A. Cole ◽  
...  

AbstractWe present the first results of a comprehensive HST study of the star-formation history of Fornax dSph, based on WFPC2 imaging of 7 Fornax fields. Our observations reach the oldest main-sequence turnoffs, allowing us to address fundamental questions of dwarf galaxy evolution, such as the spatial variations in the stellar content, and whether the old stellar population is made up of stars formed in a very early burst or the result of a more continuous star formation.


2011 ◽  
Vol 414 (3) ◽  
pp. 2204-2214 ◽  
Author(s):  
Stefano Rubele ◽  
Léo Girardi ◽  
Vera Kozhurina-Platais ◽  
Paul Goudfrooij ◽  
Leandro Kerber

2017 ◽  
Vol 13 (S334) ◽  
pp. 158-161
Author(s):  
Edouard J. Bernard

AbstractTaking advantage of the Gaia DR1, we combined TGAS parallaxes with the Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. Our dynamically-evolved SFH is in excellent agreement with that calculated from the Hipparcos catalogue within 80 pc of the Sun, showing an enhanced star formation rate (SFR) in the past ~4 Gyr. We then correct the SFR for the disc thickening with age to obtain a SFR that is representative of the whole solar cylinder, and show that even with an extreme correction our results are not consistent with an exponentially decreasing SFR as found by recent studies. Finally, we discuss how this technique can be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ.


1999 ◽  
Vol 118 (5) ◽  
pp. 2262-2279 ◽  
Author(s):  
Jon A. Holtzman ◽  
John S. Gallagher III ◽  
Andrew A. Cole ◽  
Jeremy R. Mould ◽  
Carl J. Grillmair ◽  
...  

Author(s):  
Masao Hayashi ◽  
Yusei Koyama ◽  
Tadayuki Kodama ◽  
Yutaka Komiyama ◽  
Yen-Ting Lin ◽  
...  

Abstract We present the large-scale structure over a more than 50 comoving Mpc scale at $z \sim 0.9$ where the CL1604 supercluster, which is one of the largest structures ever known at high redshifts, is embedded. The wide-field deep imaging survey by the Subaru Strategic Program with the Hyper Suprime-Cam reveals that the already-known CL1604 supercluster is a mere part of larger-scale structure extending to both the north and the south. We confirm that there are galaxy clusters at three slightly different redshifts in the northern and southern sides of the supercluster by determining the redshifts of 55 red-sequence galaxies and 82 star-forming galaxies in total via follow-up spectroscopy with Subaru/FOCAS and Gemini-N/GMOS. This suggests that the structure known as the CL1604 supercluster is the tip of the iceberg. We investigate the stellar population of the red-sequence galaxies using 4000 Å break and Balmer H$\delta$ absorption lines. Almost all of the red-sequence galaxies brighter than $21.5\:$mag in the z band show an old stellar population of $\gtrsim\! 2\:$Gyr. The comparison of composite spectra of the red-sequence galaxies in the individual clusters show that the galaxies at a similar redshift have a similar stellar population age, even if they are located $\sim\! 50\:$Mpc apart from each other. However, there could be a large variation in the star formation history. Therefore, it is likely that galaxies associated with the large-scale structure on a 50 Mpc scale formed at almost the same time, have assembled into the denser regions, and then have evolved with different star formation history along the hierarchical growth of the cosmic web.


Sign in / Sign up

Export Citation Format

Share Document