scholarly journals Emission-Line Variability in AGN

1989 ◽  
Vol 134 ◽  
pp. 100-102
Author(s):  
Dan Maoz

It has been apparent for some time that comparison of continuum and emission-line light curves of AGN may enable determination of the dimensions and structure of the Broad Line Region (BLR)(see Peterson 1988, and references therein). Observations to this end (Antonucci and Cohen 1983, Peterson et al. 1985, Clavel et al. 1987) and their analysis using cross-correlation to find the time lag between line and continuum variations (Gaskell and Sparke 1986), indicate BLR sizes an order of magnitude smaller than allowed by standard photoionization models for several AGN. Gaskell and Peterson (1987) analyzed errors in the cross-correlation method as applied to AGN time series in general and specifically to the Seyfert galaxy Akn120. In order to generalize and extend their analysis we investigated the significance of BLR sizes derived by cross-correlation under different model assumptions and observational circumstances (Maoz and Netzer 1988).

1994 ◽  
Vol 159 ◽  
pp. 173-176
Author(s):  
Ivan I. Shevchenko

The amplitude–time lag (“ΔA-Δt”) relation is considered in order to describe behaviour of the emission-line spectrum of an active galactic nucleus during a separate active event. Here ΔA, called the amplitude, is the maximum relative increment of the flux in a line, and Δt is the time lag between the maximum of the ionizing continuum flare and the maximum of the flare in a line. As suggested by Shevchenko (1988), the construction and analysis of such relations can be used to discriminate between broad-line region models. Comparison of theoretical “ΔA-Δt” relations with the observed one composed by data for flares in various lines during a separate active event, is proved to be a useful tool for investigating the geometry of a broad-line region, for studies of the form of phase functions of a typical line-emitting cloud in various lines, as well as for clearing up the duration and amplitude of the initial flare in the ionizing continuum. The advantage of this method is that it utilizes the most general observed characteristics of the emission-line flares and nevertheless provides basic information on the allowed BLR models before the detailed modelling of emission-line light curves is performed.


2009 ◽  
Vol 5 (S267) ◽  
pp. 209-209
Author(s):  
Alexander V. Melnikov ◽  
Ivan I. Shevchenko

Following the approach of Melnikov & Shevchenko (2008), we explore how the nonlinearity in the emission-line luminosity Ll of a broad-line region cloud, in its dependence on the ionizing continuum flux Fi incident on the cloud, affects estimates of the size of the broad-line region by means of cross-correlation methods. We show that the estimates obtained by straightforward cross-correlation of emission-line and continuum light curves can significantly underestimate the BLR size. We demonstrate examples of direct reverberation modelling of AGN emission-line light curves taking into account the nonlinearity of the “Ll–Fi” relation. This nonlinearity allows one to explain the differences in the time lags for different lines. Cross-correlation estimates of the BLR size turn out to be small in comparison to the estimates obtained by the direct reverberation modelling.


1998 ◽  
Vol 188 ◽  
pp. 424-425
Author(s):  
S.J. Xue ◽  
F.Z. Cheng

One of the primary goals of AGN variability studies has been to determine the size of broad-line region (BLR) through the reverberation mapping technique. In a recent international multiwavelength spectroscopic monitoring campaign, NGC 4151 has been observed intensively by ground-based telescopes for a period of over 2 months, with a typical temporal resolution of 1 day. The main result from this optical campaign is that finding the variation in the emission line flux (Hβ or Hα) lagging the continuum by 0-3 days (1993 campaign: Kaspi et al. 1996). This is in contrast to the past results in which a time lag of 9±2 days was found for the same emission line (1988 campaign: Maoz et al. 1991). Such a BLR “size problem” may be caused by a different variability timescale of the ionizing continuum or a real change in BLR gas distribution in the 5.5 yr interval between the two watch campaigns. In order to clarify which of the two possibilities is most likely the real case, we performed further reverberation analysis on both optical datasets.


1997 ◽  
Vol 159 ◽  
pp. 159-162
Author(s):  
Shai Kaspi

AbstractWe present 5 years of results from a spectrophotometric monitoring program of 28 quasars. The typical sampling intervals are several months. We show the light curves obtained for two quasars, PG 0804+762 and PG 0953+414. Both sources show Balmer emissionline variations which follow those of the continuum with a time lag of order 100 days. This is the first reliable measurement of such a lag in active galactic nuclei with luminosity L > 1045 erg s−1. The broad-line region (BLR) size that is implied is almost an order of magnitude larger than that measured in several Seyfert 1 galaxies and is consistent with the hypothesis that the BLR size grows as L0.5.


2019 ◽  
Vol 490 (1) ◽  
pp. 124-134
Author(s):  
Anwesh Majumder ◽  
Kaustav Mitra ◽  
Ritaban Chatterjee ◽  
C M Urry ◽  
C D Bailyn ◽  
...  

ABSTRACT We present cross-correlation studies of γ-ray (0.1–300 GeV), X-ray (0.2–10 keV), and optical (R band) variability of a sample of 26 blazars during 2008–2016. The light curves are from Fermi-LAT, Swift-XRT, and the Yale-SMARTS blazar monitoring program. We stack the discrete cross-correlation functions of the blazars such that the features that are consistently present in a large fraction of the sample become more prominent in the final result. We repeat the same analysis for two subgroups, namely, low synchrotron peaked (LSP) and high synchrotron peaked (HSP) blazars. We find that, on average, the variability at multiple bands is correlated, with a time lag consistent with zero in both subgroups. We describe this correlation with a leptonic model of non-thermal emission from blazar jets. By comparing the model results with those from the actual data, we find that the inter-band cross-correlations are consistent with an emission region of size 0.1 pc within the broad-line region for LSP blazars. We rule out large changes of magnetic field (>0.5 Gauss) across the emission region or small values of magnetic field (e.g., 0.2 Gauss) for this population. We also find that the observed variability of the HSP blazars can be explained if the emission region is much larger than the distance to the broad-line region from the central black hole.


1997 ◽  
Vol 112 (2) ◽  
pp. 271-283 ◽  
Author(s):  
M. Santos‐Lleo ◽  
E. Chatzichristou ◽  
C. Mendes de Oliveira ◽  
C. Winge ◽  
D. Alloin ◽  
...  

2006 ◽  
pp. 1-11 ◽  
Author(s):  
L.C. Popovic

In this paper a discussion of kinematics and physics of the Broad Line Region (BLR) is given. The possible physical conditions in the BLR and problems in determination of the physical parameters (electron temperature and density) are considered. Moreover, one analyses the geometry of the BLR and the probability that (at least) a fraction of the radiation in the Broad Emission Lines (BELs) originates from a relativistic accretion disk.


Sign in / Sign up

Export Citation Format

Share Document