spectroscopic monitoring
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 47)

H-INDEX

32
(FIVE YEARS 3)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 201
Author(s):  
István Timári ◽  
Sára Balla ◽  
Krisztina Fehér ◽  
Katalin E. Kövér ◽  
László Szilágyi

Detailed investigation of ligand–protein interactions is essential for better understanding of biological processes at the molecular level. Among these binding interactions, the recognition of glycans by lectins is of particular importance in several diseases, such as cancer; therefore, inhibition of glycan-lectin/galectin interactions represents a promising perspective towards developing therapeutics controlling cancer development. The recent introduction of 77Se NMR spectroscopy for monitoring the binding of a selenoglycoside to galectins prompted interest to optimize the sensitivity by increasing the 77Se content from the natural 7.63% abundance to 99%. Here, we report a convenient synthesis of 77Se-enriched selenodigalactoside (SeDG), which is a potent ligand of the medically relevant human galectin-3 protein, and proof of the expected sensitivity gain in 2D 1H, 77Se correlation NMR experiments. Our work opens perspectives for adding isotopically enriched selenoglycans for rapid monitoring of lectin-binding of selenated as well as non-selenated ligands and for ligand screening in competition experiments.


2021 ◽  
Author(s):  
Lea Eilert ◽  
Anett Schallmey ◽  
Felix Kaspar

Despite the prevalence of ortho- and pyrophosphate in biochemistry, operationally simple and versatile high-throughput methodologies for their quantification are lacking. We herein introduce PUB, a module for phosphate detection by continuous UV-spectroscopic monitoring of 5-bromouridine phosphorolysis. The PUB module employs cheaply available, bench-stable reagents and can be employed for continuous and discontinuous reaction monitoring in biochemical assays to detect (pyro-)phosphate concentrations spanning almost four orders of magnitude, as demonstrated with representative use-cases.


2021 ◽  
pp. 139774
Author(s):  
Konrad Trzciński ◽  
Mariusz Szkoda ◽  
Zuzanna Zarach ◽  
Mirosław Sawczak ◽  
Andrzej P. Nowak

2021 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
Petr Petrov

Classical T Tauri stars (CTTS) are at the early evolutionary stage when the processes of planet formation take place in the surrounding accretion disks. Most of the observed activity in CTTS is due to magnetospheric accretion and wind flows. Observations of the accreting gas flows and appearance of the line-dependent veiling of the photospheric spectrum in CTTS are considered. Evidence for the dusty wind causing the observed irregular variability of CTTS is presented. Photometric and spectroscopic monitoring of two CTTS, RY Tau and SU Aur, has been carried out atthe Crimean Astrophysical Observatory since 2013 aimed at studying the dynamics of accretion and wind flows on time scales from days to years. The observed variations in the dynamical parameters may be caused by changes in the accretion rate and in the global magnetic fields of CTTS.


2021 ◽  
Vol 118 (26) ◽  
pp. e2025879118
Author(s):  
Sheng Ye ◽  
Guozhen Zhang ◽  
Jun Jiang

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades a human cell via human angiotensin-converting enzyme 2 (hACE2) as the entry, causing the severe coronavirus disease (COVID-19). The interactions between hACE2 and the spike glycoprotein (S protein) of SARS-CoV-2 hold the key to understanding the molecular mechanism to develop treatment and vaccines, yet the dynamic nature of these interactions in fluctuating surroundings is very challenging to probe by those structure determination techniques requiring the structures of samples to be fixed. Here we demonstrate, by a proof-of-concept simulation of infrared (IR) spectra of S protein and hACE2, that time-resolved spectroscopy may monitor the real-time structural information of the protein−protein complexes of interest, with the help of machine learning. Our machine learning protocol is able to identify fine changes in IR spectra associated with variation of the secondary structures of S protein of the coronavirus. Further, it is three to four orders of magnitude faster than conventional quantum chemistry calculations. We expect our machine learning protocol would accelerate the development of real-time spectroscopy study of protein dynamics.


Author(s):  
V L Oknyansky ◽  
M S Brotherton ◽  
S S Tsygankov ◽  
A V Dodin ◽  
D-W Bao ◽  
...  

Abstract We present the results of photometric and spectroscopic monitoring campaigns of the changing look AGN NGC 3516 carried out in 2018 to 2020 covering the wavelength range from the X-ray to the optical. The facilities included the telescopes of the CMO SAI MSU, the 2.3-m WIRO telescope, and the XRT and UVOT of Swift. We found that NGC 3516 brightened to a high state and could be classified as Sy1.5 during the late spring of 2020. We have measured time delays in the responses of the Balmer and He II λ4686 lines to continuum variations. In the case of the best-characterized broad Hβ line, the delay to continuum variability is about 17 days in the blue wing and is clearly shorter, 9 days, in the red, which is suggestive of inflow. As the broad lines strengthened, the blue side came to dominate the Balmer lines, resulting in very asymmetric profiles with blueshifted peaks during this high state. During the outburst the X-ray flux reached its maximum on 1 April 2020 and it was the highest value ever observed for NGC 3516 by the Swift observatory. The X-ray hard photon index became softer, ∼1.8 in the maximum on 21 Apr 2020 compared to the mean ∼0.7 during earlier epochs before 2020. We have found that the UV and optical variations correlated well (with a small time delay of 1–2 days) with the X-ray until the beginning of April 2020, but later, until the end of Jun. 2020, these variations were not correlated. We suggest that this fact may be a consequence of partial obscuration by Compton-thick clouds crossing the line of sight.


Seikei-Kakou ◽  
2021 ◽  
Vol 33 (5) ◽  
pp. 176-181
Author(s):  
Shunsuke Hosoe ◽  
Yuta Hikima ◽  
Masahiro Ohshima ◽  
Masahiro Watari ◽  
Akihiro Naito

Sign in / Sign up

Export Citation Format

Share Document