dispersion profile
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 14)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 481 ◽  
pp. 126555
Author(s):  
Yanchen Guo ◽  
Jinhui Yuan ◽  
Kuiru Wang ◽  
Haiyun Wang ◽  
Yujun Cheng ◽  
...  

Author(s):  
Izaddeen Kabir Yakasai ◽  
Pg. Emeroylariffion Abas ◽  
Norazanita Hj Shamsuddin ◽  
Feroza Begum

<p><span>A thorough modal characterization, centred on the full vectorial finite element method (FEM) has been used to model and numerically investigate a porous core photonic crystal fibre (PC-PCF), which may potentially be integrated into Terahertz (10<sup>12</sup> Hz) compact systems. The proposed fibre consists of a rotated hexagonal core surrounded by a conventional hexagonal cladding. It has been shown that effective material loss (EML), core power fraction and dispersion profile are 0.019 cm<sup>-1</sup>, 51.7% and 0.5 ± 0.04 ps/THz/cm within 1 THz bandwidth, respectively. Based on simulated results and noncomplex design, it is envisaged that the proposed fibre can be realised for industrial THz applications. </span></p>


2020 ◽  
Vol 497 (1) ◽  
pp. 765-775
Author(s):  
Duncan A Forbes ◽  
Anna Ferré-Mateu ◽  
Mark Durré ◽  
Jean P Brodie ◽  
Aaron J Romanowsky

ABSTRACT Using the Keck Cosmic Web Imager, we obtain spectra of several globular clusters (GCs), ultracompact dwarfs (UCDs), and the inner halo starlight of M87, at a similar projected galactocentric radius of ∼5 kpc. This enables us, for the first time, to apply the same stellar population analysis to the GCs, UCDs, and starlight consistently to derive ages, metallicities, and alpha-element abundances in M87. We find evidence for a dual stellar population in the M87 halo light, i.e. an ∼80 per cent component by mass that is old and metal-rich and a ∼20 per cent component that is old but metal-poor. Two red GCs share similar stellar populations to the halo light suggesting they may have formed contemporaneously with the dominant halo component. Three UCDs, and one blue GC, have similar stellar populations, with younger mean ages, lower metallicities, and near solar alpha-element abundances. Combined with literature data, our findings are consistent with the scenario that UCDs are the remnant nucleus of a stripped galaxy. We further investigate the discrepancy in the literature for M87’s kinematics at large radii, favouring a declining velocity dispersion profile. This work has highlighted the need for more self-consistent studies of galaxy haloes.


2020 ◽  
Vol 637 ◽  
pp. A34 ◽  
Author(s):  
B. Sartoris ◽  
A. Biviano ◽  
P. Rosati ◽  
A. Mercurio ◽  
C. Grillo ◽  
...  

Context. The shape of the mass density profiles of cosmological halos informs us of the nature of dark matter (DM) and DM-baryons interactions. Previous estimates of the inner slope of the mass density profiles of clusters of galaxies are in opposition to predictions derived from numerical simulations of cold dark matter (CDM). Aims. We determine the inner slope of the DM density profile of a massive cluster of galaxies, Abell S1063 (RXC J2248.7−4431) at z = 0.35, with a dynamical analysis based on an extensive spectroscopic campaign carried out with the VIMOS and MUSE spectrographs at the ESO VLT. This new data set provides an unprecedented sample of 1234 spectroscopic members, 104 of which are located in the cluster core (R ≲ 200 kpc), extracted from the MUSE integral field spectroscopy. The latter also allows the stellar velocity dispersion profile of the brightest cluster galaxy (BCG) to be measured out to 40 kpc. Methods. We used an upgraded version of the MAMPOSSt technique to perform a joint maximum likelihood fit to the velocity dispersion profile of the BCG and to the velocity distribution of cluster member galaxies over a radial range from 1 kpc to the virial radius (r200 ≈ 2.7 Mpc). Results. We find a value of γDM = 0.99 ± 0.04 for the inner logarithmic slope of the DM density profile after marginalizing over all the other parameters of the mass and velocity anisotropy models. Moreover, the newly determined dynamical mass profile is found to be in excellent agreement with the mass density profiles obtained from the independent X-ray hydrostatic analysis based on deep Chandra data, as well as the strong and weak lensing analyses. Conclusions. Our value of the inner logarithmic slope of the DM density profile γDM is in very good agreement with predictions from cosmological CDM simulations. We will extend our analysis to more clusters in future works. If confirmed on a larger cluster sample, our result makes this DM model more appealing than alternative models.


Author(s):  
M. Heusinger ◽  
T. Flügel-Paul ◽  
K. Grabowski ◽  
D. Michaelis ◽  
U. D. Zeitner

Sign in / Sign up

Export Citation Format

Share Document