scholarly journals HI absorption in Radio Galaxies

2002 ◽  
Vol 199 ◽  
pp. 118-121 ◽  
Author(s):  
R. Morganti ◽  
T.A. Oosterloo ◽  
G. van Moorsel ◽  
C.N. Tadhunter ◽  
N. Killeen

Twenty-two powerful radio galaxies have been searched for HI absorption. We find the highest probability of detecting HI in absorption among narrow-line compact (or small) galaxies or galaxies with indication of richer interstellar medium (i.e. with ongoing or recent star-formation). We discuss the difficulty in the interpretation of the origin of the HI absorption due to the uncertainty in the systemic velocity of the galaxies.

2017 ◽  
Vol 599 ◽  
pp. A123 ◽  
Author(s):  
N. P. H. Nesvadba ◽  
C. De Breuck ◽  
M. D. Lehnert ◽  
P. N. Best ◽  
C. Collet

We present VLT/SINFONI imaging spectroscopy of the rest-frame optical emission lines of warm ionized gas in 33 powerful radio galaxies at redshifts z ≳ 2, which are excellent sites to study the interplay of rapidly accreting active galactic nuclei and the interstellar medium of the host galaxy in the very late formation stages of massive galaxies. Our targets span two orders of magnitude in radio size (2−400 kpc) and kinetic jet energy (a few 1046– almost 1048 erg s-1). All sources have complex gas kinematics with broad line widths up to ~1300 km s-1. About half have bipolar velocity fields with offsets up to 1500 km s-1 and are consistent with global back-to-back outflows. The others have complex velocity distributions, often with multiple abrupt velocity jumps far from the nucleus of the galaxy, and are not associated with a major merger in any obvious way. We present several empirical constraints that show why gas kinematics and radio jets seem to be physically related in all galaxies of the sample. The kinetic energy in the gas from large scale bulk and local outflow or turbulent motion corresponds to a few 10-3 to 10-2 of the kinetic energy output of the radio jet. In galaxies with radio jet power ≳ 1047 erg s-1, the kinetic energy in global back-to-back outflows dominates the total energy budget of the gas, suggesting that bulk motion of outflowing gas encompasses the global interstellar medium. This might be facilitated by the strong gas turbulence, as suggested by recent analytical work. We compare our findings with recent hydrodynamic simulations, and discuss the potential consequences for the subsequent evolution of massive galaxies at high redshift. Compared with recent models of metal enrichment in high-z AGN hosts, we find that the gas-phase metallicities in our galaxies are lower than in most low-z AGN, but nonetheless solar or even super-solar, suggesting that the ISM we see in these galaxies is very similar to the gas from which massive low-redshift galaxies formed most of their stars. This further highlights that we are seeing these galaxies near the end of their active formation phase.


2009 ◽  
Vol 5 (S265) ◽  
pp. 179-180
Author(s):  
K. Matsuoka ◽  
T. Nagao ◽  
R. Maiolino ◽  
A. Marconi ◽  
Y. Taniguchi

AbstractWe investigate the metallicity of the narrow line regions (NLRs) of high-z radio galaxies (HzRGs), using new deep optical spectra of 9 HzRGs obtained with FORS2 on VLT and data from the literature. To estimate the metallicity of NLRs we focus on the Civ/Heii and Ciii]/Civ flux ratios. Based on comparison between the observed emission-line flux ratios and the prediction of our photoionization model calculations, we find no significant metallicity evolution in NLRs of HzRGs, up to z ~ 4. We discuss the possibility that massive galaxies had almost completed the major epoch of the star formation in the very high-z universe (z > 5).


2017 ◽  
Vol 600 ◽  
pp. A121 ◽  
Author(s):  
N. P. H. Nesvadba ◽  
G. Drouart ◽  
C. De Breuck ◽  
P. Best ◽  
N. Seymour ◽  
...  

1999 ◽  
Vol 514 (2) ◽  
pp. 579-586 ◽  
Author(s):  
Todd Hurt ◽  
Robert Antonucci ◽  
Ross Cohen ◽  
Anne Kinney ◽  
Julian Krolik

2004 ◽  
Vol 217 ◽  
pp. 220-221
Author(s):  
L. Verdes-Montenegro ◽  
J. Sulentic ◽  
D. Espada ◽  
S. Leon ◽  
U. Lisenfeld ◽  
...  

We are constructing the first complete unbiased control sample of the most isolated galaxies of the northern sky to serve as a template in the study of star formation and galaxy evolution in denser environments. Our goal is to compare and quantify the properties of different phases of the interstellar medium in this sample, as well as the level of star formation, both relevant parameters in the internal evolution of galaxies and strongly conditioned by the environment. To achieve this goal we are building a multiwavelength database for this sample to compare and quantify the properties of different phases of the ISM.


2007 ◽  
Vol 375 (4) ◽  
pp. 1299-1310 ◽  
Author(s):  
M. Villar-Martín ◽  
A. Humphrey ◽  
C. De Breuck ◽  
R. Fosbury ◽  
L. Binette ◽  
...  

2012 ◽  
Vol 8 (S294) ◽  
pp. 325-336 ◽  
Author(s):  
Blakesley Burkhart ◽  
Alex Lazarian

AbstractMagnetohydrodynamic (MHD) turbulence is a critical component of the current paradigms of star formation, dynamo theory, particle transport, magnetic reconnection and evolution of the ISM. In order to gain understanding of how MHD turbulence regulates processes in the Galaxy, a confluence of numerics, observations and theory must be imployed. In these proceedings we review recent progress that has been made on the connections between theoretical, numerical, and observational understanding of MHD turbulence as it applies to both the neutral and ionized interstellar medium.


2006 ◽  
Vol 2 (S237) ◽  
pp. 358-362
Author(s):  
M. K. Ryan Joung ◽  
Mordecai-Mark Mac Low

AbstractWe report on a study of interstellar turbulence driven by both correlated and isolated supernova explosions. We use three-dimensional hydrodynamic models of a vertically stratified interstellar medium run with the adaptive mesh refinement code Flash at a maximum resolution of 2 pc, with a grid size of 0.5 × 0.5 × 10 kpc. Cold dense clouds form even in the absence of self-gravity due to the collective action of thermal instability and supersonic turbulence. Studying these clouds, we show that it can be misleading to predict physical properties such as the star formation rate or the stellar initial mass function using numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. The amount of mass available for collapse depends on scale, suggesting a simple translation from the density PDF to the stellar IMF may be questionable. Even though the supernova-driven turbulence does produce compressed clouds, it also opposes global collapse. The net effect of supernova-driven turbulence is to inhibit star formation globally by decreasing the amount of mass unstable to gravitational collapse.


Sign in / Sign up

Export Citation Format

Share Document