scholarly journals Molecular hydrogen as dark mass in dwarf galaxies

2004 ◽  
Vol 220 ◽  
pp. 251-252
Author(s):  
P. R. Williams ◽  
C. Marzok ◽  
S. Myers ◽  
A. H. Nelson

We report here an example of a series of computer simulations of the formation of disk galaxies, including a standard cold dark matter component, gas, and star formation, which result in objects which closely resemble observed giant galaxies, with a population of long-lived dwarf satellites which contain little or no non–baryonic dark matter.

2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


2007 ◽  
Vol 3 (S244) ◽  
pp. 17-25 ◽  
Author(s):  
E. Zackrisson ◽  
N. Bergvall ◽  
C. Flynn ◽  
G. Östlin ◽  
G. Micheva ◽  
...  

AbstractDeep optical/near-IR surface photometry of galaxies outside the Local Group have revealed faint and very red halos around objects as diverse as disk galaxies and starbursting dwarf galaxies. The colours of these structures are too extreme to be reconciled with stellar populations similar to those seen in the stellar halos of the Milky Way or M31, and alternative explanations like dust reddening, high metallicities or nebular emission are also disfavoured. A stellar population obeying an extremely bottom-heavy initial mass function (IMF), is on the other hand consistent with all available data. Because of its high mass-to-light ratio, such a population would effectively behave as baryonic dark matter and could account for some of the baryons still missing in the low-redshift Universe. Here, we give an overview of current red halo detections, alternative explanations for the origin of the red colours and ongoing searches for red halos around types of galaxies for which this phenomenon has not yet been reported. A number of potential tests of the bottom-heavy IMF hypothesis are also discussed.


1987 ◽  
Vol 124 ◽  
pp. 391-413
Author(s):  
Joseph Silk

The implications for galaxy formation of inflationary cosmology are reviewed. In particular, I explore some implications of the hypothesis that galaxies form from adiabatic, gaussian density fluctuations in a cold dark matter–dominated universe. Topics discussed include protogalaxies and the epoch of galaxy formation, Lyman alpha clouds, dark halos and dwarf galaxies. Finally I describe how environmental biasing may arise as a consequence of tidally induced star formation in protoclusters.


2019 ◽  
Vol 486 (4) ◽  
pp. 4790-4804 ◽  
Author(s):  
Sownak Bose ◽  
Carlos S Frenk ◽  
Adrian Jenkins ◽  
Azadeh Fattahi ◽  
Facundo A Gómez ◽  
...  

ABSTRACT Measurements of the rotation curves of dwarf galaxies are often interpreted as requiring a constant density core at the centre, at odds with the ‘cuspy’ inner profiles predicted by N-body simulations of cold dark matter (CDM) haloes. It has been suggested that this conflict could be resolved by fluctuations in the inner gravitational potential caused by the periodic removal of gas following bursts of star formation. Earlier work has suggested that core formation requires a bursty and extended star formation history (SFH). Here we investigate the structure of CDM haloes of dwarf galaxies ($M_{{\rm DM}} \sim 10^9\!-\!5\times 10^{10}\, {\rm M}_\odot$) formed in the apostle (‘A Project of Simulating the Local Environment’) and auriga cosmological hydrodynamic simulations. Our simulations have comparable or better resolution than others that make cores ($M_{{\rm gas}} \sim 10^4\, {\rm M}_\odot$, gravitational softening ∼150 pc). Yet, we do not find evidence of core formation at any mass or any correlation between the inner slope of the DM density profile and temporal variations in the SFH. apostle and auriga dwarfs display a similar diversity in their cumulative SFHs to available data for Local Group dwarfs. Dwarfs in both simulations are DM-dominated on all resolved scales at all times, likely limiting the ability of gas outflows to alter significantly the central density profiles of their haloes. We conclude that recurrent bursts of star formation are not sufficient to cause the formation of cores, and that other conditions must also be met for baryons to be able to modify the central DM cusp.


2008 ◽  
Vol 4 (S254) ◽  
pp. 19-20
Author(s):  
Simon D. M. White

AbstractTogether with the discovery of the accelerated expansion of the present Universe and measurements of large-scale structure at low redshift, observations of the cosmic microwave background have established a standard paradigm in which all cosmic structure grew from small fluctuations generated at very early times in a flat universe which today consists of 72% dark energy, 23.5% dark matter and 4.5% ordinary baryons. The CMB sky provides us with a direct image of this universe when it was 400,000 years old and very nearly uniform. The galaxy formation problem is then to understand how observed galaxies with all their regularity and diversity arose from these very simple initial conditions. Although gravity is the prime driver, many physical processes appear to play an important role in this transformation, and direct numerical simulation has become the principal tool for detailed investigation of the complex and strongly nonlinear interactions between them.The evolution of structure in the gravitationally dominant Cold Dark Matter distribution can now be simulated in great detail, provided the effects of the baryons are ignored, and there is general consensus for the results on scales relevant to the formation of galaxies like our own. The basic nonlinear units are so-called “dark matter halos”, slowly rotating, triaxial, quasi-equilibrium systems with a universal cusped density profile and substantial substructure in the form of a host of much less massive subhalos which are concentrated primarily in their outer regions.Attempts to include the baryons, and so to model the formation of the visible parts of galaxies, have given much more diverse results. It has been known for 30 years that substantial feedback, presumably from stellar winds and supernovae, is required to prevent overcooling of gas and excessive star formation in the early stages of galaxy assembly. When realistic galaxy formation simulations first became possible in the early 1990's, this problem was immediately confirmed. Without effective feedback, typical halos produced galaxies which were too massive, too concentrated and had too little disk to be consistent with observation.Simple models for disk formation from the mid 1990's show that the angular momentum predicted for collapsing dark halos is sufficient for them to build a disk population similar to that observed. Direct simulations have repeatedly failed to confirm this picture, however, because nonlinear effects lead to substantial transfer of angular momentum between the various components. In most cases the condensing baryonic material loses angular momentum to the dark matter, and the final galaxy ends up with a disk that is too compact or contains too small a fraction of the stars.These problems have been reduced as successive generations of simulations have dramatically improved the numerical resolution and have introduced “better” implementations of feedback (i.e. more successful at building disks). Despite this, no high-resolution simulation has so far been able to produce a present-day disk galaxy with a bulge-to-disk mass ratio much less than one in a proper ΛCDM context. Such galaxies are common in the real Universe; our own Milky Way is a good example. The variety of results obtained by different groups show that this issue is very sensitive to how star formation and feedback are treated, and all implementations of these processes to date have been much too schematic to be confident of their predictions.The major outstanding issues I see related to disk galaxies and their formation are the following: Do real disk galaxies have the NFW halos predicted by the ΛCDM cosmology? If not, could the deviations have been produced by the formation of the observed baryonic components, or must the basic structure formation picture be changed? How are Sc and later type galaxies made? Why don't our simulations produce them? What determines which galaxies become barred and which not? Can we demonstrate that secular evolution produces the observed population of (pseudo)bulges from pre-existing disks? How does the observed population of thin disks survive bombardment by substructure and the other transient potential fluctuations expected in ΛCDM halos? Is a better treatment of feedback really the answer? If so, can we demonstrate it using chemical abundances as fossil tracers? And how can we best use observations at high redshift to clarify these formation issues?


2021 ◽  
Vol 502 (2) ◽  
pp. 1785-1796
Author(s):  
R A Jackson ◽  
S Kaviraj ◽  
G Martin ◽  
J E G Devriendt ◽  
A Slyz ◽  
...  

ABSTRACT In the standard ΛCDM (Lambda cold dark matter) paradigm, dwarf galaxies are expected to be dark matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local dwarfs with extremely low dark matter content appear to contradict this picture, potentially bringing the validity of the standard model into question. We use NewHorizon, a high-resolution cosmological simulation, to demonstrate that sustained stripping of dark matter, in tidal interactions between a massive galaxy and a dwarf satellite, naturally produces dwarfs that are dark matter-deficient, even though their initial dark matter fractions are normal. The process of dark matter stripping is responsible for the large scatter in the halo-to-stellar mass relation in the dwarf regime. The degree of stripping is driven by the closeness of the orbit of the dwarf around its massive companion and, in extreme cases, produces dwarfs with halo-to-stellar mass ratios as low as unity, consistent with the findings of recent observational studies. ∼30 per cent of dwarfs show some deviation from normal dark matter fractions due to dark matter stripping, with 10 per cent showing high levels of dark matter deficiency (Mhalo/M⋆ < 10). Given their close orbits, a significant fraction of dark matter-deficient dwarfs merge with their massive companions (e.g. ∼70 per cent merge over time-scales of ∼3.5 Gyr), with the dark matter-deficient population being constantly replenished by new interactions between dwarfs and massive companions. The creation of these galaxies is therefore a natural by-product of galaxy evolution and their existence is not in tension with the standard paradigm.


2015 ◽  
Vol 808 (1) ◽  
pp. L17 ◽  
Author(s):  
Yu Feng ◽  
Tiziana Di Matteo ◽  
Rupert Croft ◽  
Ananth Tenneti ◽  
Simeon Bird ◽  
...  

2012 ◽  
Vol 425 (4) ◽  
pp. 2817-2823 ◽  
Author(s):  
Ismael Ferrero ◽  
Mario G. Abadi ◽  
Julio F. Navarro ◽  
Laura V. Sales ◽  
Sebastián Gurovich

2020 ◽  
Vol 498 (1) ◽  
pp. 702-717 ◽  
Author(s):  
Mark R Lovell ◽  
Wojciech Hellwing ◽  
Aaron Ludlow ◽  
Jesús Zavala ◽  
Andrew Robertson ◽  
...  

ABSTRACT The nature of the dark matter can affect the collapse time of dark matter haloes, and can therefore be imprinted in observables such as the stellar population ages and star formation histories of dwarf galaxies. In this paper, we use high-resolution hydrodynamical simulations of Local Group-analogue (LG) volumes in cold dark matter (CDM), sterile neutrino warm dark matter (WDM) and self-interacting dark matter (SIDM) models with the eagle galaxy formation code to study how galaxy formation times change with dark matter model. We are able to identify the same haloes in different simulations, since they share the same initial density field phases. We find that the stellar mass of galaxies depends systematically on resolution, and can differ by as much as a factor of 2 in haloes of a given dark matter mass. The evolution of the stellar populations in SIDM is largely identical to that of CDM, but in WDM early star formation is instead suppressed. The time at which LG haloes can begin to form stars through atomic cooling is delayed by ∼200 Myr in WDM models compared to CDM. It will be necessary to measure stellar ages of old populations to a precision of better than 100 Myr, and to address degeneracies with the redshift of reionization – and potentially other baryonic processes – in order to use these observables to distinguish between dark matter models.


Sign in / Sign up

Export Citation Format

Share Document