Dwarf Galaxies, Cold Dark Matter, and Biased Galaxy Formation

1987 ◽  
pp. 362-362
Author(s):  
Avishai Dekel ◽  
Joseph Silk
2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


1988 ◽  
Vol 130 ◽  
pp. 245-254
Author(s):  
Jaan Einasto ◽  
Maret Einasto ◽  
Enn Saar ◽  
Bernard J. T. Jones ◽  
Vicent J. Martinez

The spatial distribution of galaxies is compared with model distributions. It is demonstrated that giant and dwarf galaxies in the Local Supercluster occupy statistically identical regions. Various tests suggest that galaxy formation is biased since all unbiased model distributions are in conflict with observed distribution of galaxies. Multifractal analysis shows that a cold dark matter dominated universe with biased galaxy formation has a fairly constant fractal dimension over a broad range of scales. This contrasts with the observed distribution which does not show simple fractal features.


2018 ◽  
Vol 14 (S344) ◽  
pp. 455-463
Author(s):  
Julio F. Navarro

AbstractThe Lambda Cold Dark Matter (LCDM) paradigm makes specific predictions for the abundance, structure, substructure and clustering of dark matter halos, the sites of galaxy formation. These predictions can be directly tested, in the low-mass halo regime, by dark matter-dominated dwarf galaxies. A number of potential challenges to LCDM have been identified when confronting the expected properties of dwarfs with observation. I review our understanding of a few of these issues, including the “missing satellites” and the “too-big-to-fail” problems, and argue that neither poses an insurmountable challenge to LCDM. Solving these problems requires that most dwarf galaxies inhabit halos of similar mass, and that there is a relatively sharp minimum halo mass threshold to form luminous galaxies. These predictions are eminently falsifiable. In particular, LCDM predicts a large number of “dark” low-mass halos, some of which should have retained enough primordial gas to be detectable in deep 21 cm or Hα surveys. Detecting this predicted population of “mini-halos” would be a major discovery and a resounding success for LCDM on small scales.


1987 ◽  
Vol 117 ◽  
pp. 362-362
Author(s):  
Avishai Dekel ◽  
Joseph Silk

The formation of dwarf, diffuse, metal-poor galaxies, as a result of supernova driven winds, is reexamained in view of the accumulating data on dwarfs in the local group and in the Virgo cluster. The observed drop in both surface-brightness and metallicity with decreasing luminosity is not easily understood if the gaseous protogalaxies are self-gravitating (because they swell after gas-loss), but they are produced naturally inside dominant halos, with a mass-radius relation that indicates ‘cold’ dark matter. The theory predicts for the faint dwarfs an M/L that increases with decreasing luminosity up to 10–100, and a corresponding slow decrease in velocity dispersion down to 5–10 km/s.


2014 ◽  
Vol 23 (10) ◽  
pp. 1430021
Author(s):  
Marc Davis

The history of cosmic structure goes back to the time of Einstein's youth, although few scientists actually thought of the problem of galaxy and cluster formation. The data and ideas were collected slowly as astronomers slowly realized the nature of the problem of large-scale structure. This paper will review several of the key episodes in the history of the field. Starting with the discovery of dark matter in the 30s, the CMBR discovery in the 1960s to the idea of an early episode of inflation in the 1980s, the field has had an acceleration of discovery. In the 80s it was realized that the initial conditions of the universe were specified by the cold dark matter (CDM). Now initial conditions for the formation of structure could be specified for any type of dark matter. With the advent of computing resources, highly nonlinear phases of galaxy formation could be simulated and scientists could ask whether cold dark matter was the correct theory, even on the scale of dwarf spheroidal galaxies, or do the properties of the dwarfs require a different type of dark matter? In an idiosyncratic list, we review several of the key events of the history of cosmic structure, including the first measurements of ξ(r), then the remarkable success of Λ CDM explanations of the large-scale universe. We next turn to velocity fields, the large-scale flow problem, a field which was so promising 20 years ago, and to the baryon acoustic oscillations, a field of remarkable promise today. We review the problem of dwarf galaxies and Lyman-α absorption systems, asking whether the evidence is pointing toward a major switch in our understanding of the nature of dark matter. Finally, we discuss flux anomalies in multiply-lensed systems, which set constraints on the number of dwarf galaxies associated with the lensing galaxy, a topic that is now very interesting since simulations have indicated there should be hundreds of dwarfs orbiting the Milky Way, rather than the 10 that are known. It is quite remarkable that many of the today's results are dependent on techniques first used by Einstein.


1998 ◽  
Vol 11 (1) ◽  
pp. 145-146
Author(s):  
David C. Koo ◽  
Rafael Guzmán

Dwarf galaxies at high redshifts are important to study for a variety of reasons. By dwarf, we mean galaxies with low-mass, though galaxies with low-luminosities or small sizes are also commonly referred to as dwarfs. Several groups have suggested that such galaxies may be major contributors to faint blue galaxies, whose nature remains unclear. Dwarfs are viable candidates for faint blue galaxies if many undergo strong bursts of star-formation at redshifts z ~ 1 (Babul and Ferguson 1996) or even lower redshifts z ~ 0.3 (Cowie, Songaila, and Hu 1991; Broadhurst et al. 1988) and fade or disappear by today; if they have a much steeper luminosity function (Driver et al. 1994) than generally adopted in faint galaxy models; or if they represent small pre-merger fragments of larger galaxies today (Guiderdoni and Rocca-Volmerange 1990; Broadhurst, Ellis, and Glazebrook 1992), as might be expected in standard cold dark matter models with hierarchical galaxy formation.


1987 ◽  
Vol 124 ◽  
pp. 391-413
Author(s):  
Joseph Silk

The implications for galaxy formation of inflationary cosmology are reviewed. In particular, I explore some implications of the hypothesis that galaxies form from adiabatic, gaussian density fluctuations in a cold dark matter–dominated universe. Topics discussed include protogalaxies and the epoch of galaxy formation, Lyman alpha clouds, dark halos and dwarf galaxies. Finally I describe how environmental biasing may arise as a consequence of tidally induced star formation in protoclusters.


2018 ◽  
Vol 14 (S344) ◽  
pp. 17-26
Author(s):  
Laura V. Sales

AbstractWe present a summary of the predictions from numerical simulations to our understanding of dwarf galaxies. It centers the discussion around the Λ Cold Dark Matter scenario (ΛCDM) but discusses also implications for alternative dark matter models. Four key predictions are identified: the abundance of dwarf galaxies, their dark matter content, their relation with environment and the existence of dwarf satellites orbiting dwarf field galaxies. We discuss tensions with observations and identify the most exciting predictions expected from simulations in the future, including i) the existence of “dark galaxies” (dark matter halos without stars), ii) the ability to resolve the structure (size, morphology, dark matter distribution) in dwarfs and iii) the number of ultra-faint satellites around dwarf galaxies. All of these predictions shall inform future observations, not only the faintest galaxies to be discovered within the Local Volume but also distant dwarfs driving galaxy formation in the early universe.


2020 ◽  
Vol 499 (4) ◽  
pp. 5932-5940
Author(s):  
C Yamila Yaryura ◽  
Mario G Abadi ◽  
Stefan Gottlöber ◽  
Noam I Libeskind ◽  
Sofía A Cora ◽  
...  

ABSTRACT Associations of dwarf galaxies are loose systems composed exclusively of dwarf galaxies. These systems were identified in the Local Volume for the first time more than 30 yr ago. We study these systems in the cosmological framework of the Λ cold dark matter (ΛCDM) model. We consider the Small MultiDark Planck simulation and populate its dark matter haloes by applying the semi-analytic model of galaxy formation SAG. We identify galaxy systems using a friends-of-friends algorithm with a linking length equal to $b=0.4 \, {\rm Mpc}\, h^{-1}$ to reproduce the size of dwarf galaxy associations detected in the Local Volume. Our samples of dwarf systems are built up removing those systems that have one or more galaxies with stellar mass larger than a maximum threshold Mmax. We analyse three different samples defined by ${\rm log}_{10}(M_{\rm max}[{\rm M}_{\odot }\, h^{-1}]) = 8.5, 9.0$, and 9.5. On average, our systems have typical sizes of $\sim 0.2\, {\rm Mpc}\, h^{-1}$, velocity dispersion of $\sim 30 {\rm km\, s^{-1}}$, and estimated total mass of $\sim 10^{11} {\rm M}_{\odot }\, h^{-1}$. Such large typical sizes suggest that individual members of a given dwarf association reside in different dark matter haloes and are generally not substructures of any other halo. Indeed, in more than 90 per cent of our dwarf systems their individual members inhabit different dark matter haloes, while only in the remaining 10 per cent members do reside in the same halo. Our results indicate that the ΛCDM model can naturally reproduce the existence and properties of dwarf galaxies’ associations without much difficulty.


Sign in / Sign up

Export Citation Format

Share Document