scholarly journals Molecular Gas and Star Formation in the NGC 3077 Tidal Arm

2004 ◽  
Vol 217 ◽  
pp. 498-503 ◽  
Author(s):  
Fabian Walter ◽  
Crystal Martin ◽  
Jürgen Ott ◽  
Andreas Heithausen

We report the discovery of extended star formation in the prominent tidal arms near NGC 3077 (member of the M 81 triplet). 36 faint compact star forming regions were identified, covering an area of 4 × 6 kpc2. HII regions are only found near the southern rim of the tidal HI arm where the HI column density reaches values above 1 × 1021 cm−2. This threshold is very similar to what is found in ‘normal’ galactic environments. We derive a total star formation rate of 2.6 × 10−3M⊙ yr−1 in the tidal feature. We also present the first high-resolution observations of molecular gas in this region. The molecular gas emission can be separated into at least 5 distinct complexes most of which do not coincide with sites of star formation. The reservoir of neutral and molecular gas in the tidal arm is huge (~5 × 108M⊙); star formation may continue at the given rate for a Hubble time. We conclude that wide-spread low-level star formation may be a common phenomenon in tidal HI tails, however it will be difficult to detect in interacting systems that are further away.

2015 ◽  
Vol 10 (S314) ◽  
pp. 8-15
Author(s):  
Charles J. Lada

AbstractStudies of molecular clouds and young stars near the sun have provided invaluable insights into the process of star formation. Indeed, much of our physical understanding of this topic has been derived from such studies. Perhaps the two most fundamental problems confronting star formation research today are: 1) determining the origin of stellar mass and 2) deciphering the nature of the physical processes that control the star formation rate in molecular gas. As I will briefly outline here, observations and studies of local star forming regions are making particularly significant contributions toward the solution of both these important problems.


2020 ◽  
Vol 498 (1) ◽  
pp. L66-L71 ◽  
Author(s):  
Simcha Brownson ◽  
Francesco Belfiore ◽  
Roberto Maiolino ◽  
Lihwai Lin ◽  
Stefano Carniani

ABSTRACT We study quenching in seven green valley galaxies on kpc scales by resolving their molecular gas content using 12CO(1–0) observations obtained with NOrthern Extended Millimeter Array and Atacama Large Millimeter Array, and their star formation rate using spatially resolved optical spectroscopy from the Mapping Nearby Galaxies at Apache Point Observatory survey. We perform radial stacking of both data sets to increase the sensitivity to molecular gas and star formation, thereby avoiding biases against strongly quenched regions. We find that both spatially resolved gas fraction (fgas) and star formation efficiency ($\rm {SFE}$) are responsible for quenching green valley galaxies at all radii: both quantities are suppressed with respect to typical star-forming regions. fgas and $\rm {SFE}$ have roughly equal influence in quenching the outer disc. We are, however, unable to identify the dominant mechanism in the strongly quenched central regions. We find that fgas is reduced by $\rm \sim\! 1~dex$ in the central regions, but the star formation rate is too low to be measured, leading to upper limits for the $\rm {SFE}$. Moving from the outer disc to central regions, the reduction in fgas is driven by an increasing $\rm \Sigma _{\star }$ profile rather than a decreasing $\rm \Sigma _{H_{2}}$ profile. The reduced fgas may therefore be caused by a decrease in the gas supply rather than molecular gas ejection mechanisms, such as winds driven by active galactic nuclei. We warn more generally that studies investigating fgas may be deceiving in inferring the cause of quenching, particularly in the central (bulge-dominated) regions of galaxies.


2020 ◽  
Vol 494 (4) ◽  
pp. 4751-4770 ◽  
Author(s):  
Mallory Molina ◽  
Nikhil Ajgaonkar ◽  
Renbin Yan ◽  
Robin Ciardullo ◽  
Caryl Gronwall ◽  
...  

ABSTRACT The attenuation of light from star-forming galaxies is correlated with a multitude of physical parameters including star formation rate, metallicity and total dust content. This variation in attenuation is even more evident on kiloparsec scales, which is the relevant size for many current spectroscopic integral field unit surveys. To understand the cause of this variation, we present and analyse Swift/UVOT near-UV (NUV) images and SDSS/MaNGA emission-line maps of 29 nearby (z < 0.084) star-forming galaxies. We resolve kiloparsec-sized star-forming regions within the galaxies and compare their optical nebular attenuation (i.e. the Balmer emission line optical depth, $\tau ^{l}_{B}\equiv \tau _{\textrm {H}\beta }-\tau _{\textrm {H}\alpha }$) and NUV stellar continuum attenuation (via the NUV power-law index, β) to the attenuation law described by Battisti et al. We show the data agree with that model, albeit with significant scatter. We explore the dependence of the scatter of the β–$\tau ^{l}_{B}$ measurements from the star-forming regions on different physical parameters, including distance from the nucleus, star formation rate and total dust content. Finally, we compare the measured $\tau ^{l}_{B}$ and β values for the individual star-forming regions with those of the integrated galaxy light. We find a strong variation in β between the kiloparsec scale and the larger galaxy scale that is not seen in $\tau ^{l}_{B}$. We conclude that the sightline dependence of UV attenuation and the reddening of β due to the light from older stellar populations could contribute to the scatter in the β–$\tau ^{l}_{B}$ relation.


2012 ◽  
Vol 8 (S292) ◽  
pp. 87-90
Author(s):  
L. Testi ◽  
E. Bressert ◽  
S. Longmore

AbstractWe summarize some of the results obtained from Herschel surveys of nearby star forming regions and the Galactic plane. We show that in the nearby star forming regions the starless core spatial surface density distribution is very similar to that of the young stellar objects. This, taken together with the similarity between the core mass function and the initial mass function for stars and the relationship between the amount of dense gas and star formation rate, suggest that the cloud fragmentation process defines the global outcome of star formation. This “simple” view of star formation may not hold on all scales. In particular dynamical interactions are expected to become important at the conditions required to form young massive clusters. We describe the successes of a simple criterion to identify young massive cluster precursors in our Galaxy based on (sub-)millimeter wide area surveys. We further show that in the location of our Galaxy where the best candidate for a precursor of a young massive cluster is found, the “simple” scaling relationship between dense gas and star formation rate appear to break down. We suggest that in regions where the conditions approach those of the central molecular zone of our Galaxy it may be necessary to revise the scaling laws for star formation.


2010 ◽  
Vol 6 (S270) ◽  
pp. 347-354
Author(s):  
Paolo Padoan ◽  
Åke Nordlund

AbstractThis work presents a new physical model of the star formation rate (SFR), tested with a large set of numerical simulations of driven, supersonic, self-gravitating, magneto-hydrodynamic (MHD) turbulence, where collapsing cores are captured with accreting sink particles. The model depends on the relative importance of gravitational, turbulent, magnetic, and thermal energies, expressed through the virial parameter, αvir, the rms sonic Mach number, S,0, and the ratio of mean gas pressure to mean magnetic pressure, β0. The SFR is predicted to decrease with increasing αvir (stronger turbulence relative to gravity), and to depend weakly on S,0 and β0, for values typical of star forming regions (S,0≈4-20 and β0≈1-20). The star-formation simulations used to test the model result in an approximately constant SFR, after an initial transient phase. Both the value of the SFR and its dependence on the virial parameter found in the simulations agree very well with the theoretical predictions.


2019 ◽  
Vol 71 (2) ◽  
Author(s):  
Tímea O Kovács ◽  
Denis Burgarella ◽  
Hidehiro Kaneda ◽  
Dániel Cs Molnár ◽  
Shinki Oyabu ◽  
...  

Abstract We have examined the relationship between star formation and polycyclic aromatic hydrocarbons (PAHs) in a variety of galaxies. PAHs are excited by the ultraviolet photons of young stars, but they are disassociated by strong UV radiation in starbursts. Therefore their emission (which is in the wavelength range covered by AKARI) can be used as a star formation tracer in main sequence galaxies. We selected our targets in the ELAIS N1 field with AKARI detections, matched them with the Herschel Point Source Catalog, and collected other publicly available photometric data. Their spectral energy distributions (SEDs) were fitted, and several parameters of the galaxies were estimated, e.g., star formation rate (SFR), stellar mass, and the fraction of PAHs compared to dust mass (qPAH), and we examined the relationships between these parameters. The final sample consisted of 48 galaxies, with redshifts from 0.04 to 2.36. The estimated qPAH values were lower on average than typical values in the literature. This could be due to various reasons, such as low metallicity, or ongoing active galactic nucleus or starburst activity. Of our sample, 83% of the objects fell in the star-forming main sequence of galaxies, while only 8% could be considered as starbursts. We found a decreasing qPAH trend with increasing AV and consequently LIR, suggesting the possible presence of compact star-forming regions. We compared the qPAH values with the known relations of the PAH luminosities, but they did not always follow the same trends (SFR, LIR), and showed only slight correlation with the PAH luminosities.


1997 ◽  
Vol 170 ◽  
pp. 11-18 ◽  
Author(s):  
Leo Blitz

If the CO distribution of the Milky Way is described as a truncated exponential rather than as a molecular ring with some gas at large radii, it becomes easier to understand the evolution of the disk of stars. The star formation rate per unit molecular gas mass is constant as a function of radius, and the H2 depletion time turns out to be only a few percent of the Hubble time. This very short timescale requires that the atomic gas act as a reservoir for the active star forming gas. Because the HI has such a different radial distribution, there must either be infall from outside the Galaxy, an efficient way for the atomic gas in the disk to lose angular momentum, or both, leading to measurable infall or inflow velocities. The truncation radius of CO is probably due to the recently identified stellar bar.


1987 ◽  
Vol 115 ◽  
pp. 548-550
Author(s):  
Tommy Wiklind

To model the nearly constant star formation rate, SFR, observed in most late-type galaxies (Gallagher et al. 1984), as well as the starbursting behaviour of some interacting galaxies (Joseph et al. 1984) we have developed a phenomenological model of the regulatory coupling between the density of the star forming part of the interstellar medium, i.e. molecular gas, and the rate of formation of massive stars.


2017 ◽  
Vol 602 ◽  
pp. A51 ◽  
Author(s):  
B. Vollmer ◽  
P. Gratier ◽  
J. Braine ◽  
C. Bot

High-z star-forming galaxies have significantly higher gas fractions and star-formation efficiencies per molecular gas mass than local star-forming galaxies. In this work, we take a closer look at the gas content or fraction and the associated star-formation rate in main sequence and starburst galaxies at z = 0 and z ~ 1–2 by applying an analytical model of galactic clumpy gas disks to samples of local spiral galaxies, ULIRGs, submillimeter (smm), and high-z star-forming galaxies. The model simultaneously calculates the total gas mass, Hi/H2 mass, the gas velocity dispersion, IR luminosity, IR spectral energy distribution, CO spectral line energy distribution (SLED), HCN(1–0) and HCO+(1–0) emission of a galaxy given its size, integrated star formation rate, stellar mass radial profile, rotation curve, and Toomre Q parameter. The model reproduces the observed CO luminosities and SLEDs of all sample galaxies within the model uncertainties (~0.3 dex). Whereas the CO emission is robust against the variation of model parameters, the HCN and HCO+ emissions are sensitive to the chemistry of the interstellar medium. The CO and HCN mass-to-light conversion factors, including CO-dark H2, are given and compared to the values found in the literature. All model conversion factors have uncertainties of a factor of two. Both the HCN and HCO+ emissions trace the dense molecular gas to a factor of approximately two for the local spiral galaxies, ULIRGs and smm-galaxies. Approximately 80% of the molecular line emission of compact starburst galaxies originates in non-self-gravitating gas clouds. The effect of HCN infrared pumping is small but measurable (10–20%). The gas velocity dispersion varies significantly with the Toomre Q parameter. The Q = 1.5 model yields high-velocity dispersions (vdisp ≫ 10 km s-1) consistent with available observations of high-z star-forming galaxies and ULIRGs. However, we note that these high-velocity dispersions are not mandatory for starburst galaxies. The integrated Kennicutt-Schmidt law has a slope of approximately 1 for the local spirals, ULIRGs, and smm-galaxies, whereas the slope is 1.7 for high-z star-forming galaxies. The model shows Kennicutt-Schmidt laws with respect to the molecular gas surface density with slopes of approximately 1.5 for local spiral galaxies, high-z star-forming galaxies. The relation steepens for compact starburst galaxies. The model star-formation rate per unit area is, as observed, proportional to the molecular gas surface density divided by the dynamical timescale. Our relatively simple analytic model together with the recipes for the molecular line emission appears to capture the essential physics of galactic clumpy gas disks.


Sign in / Sign up

Export Citation Format

Share Document