scholarly journals Tidally–Induced Angular Momentum Transport in Disks

2001 ◽  
Vol 200 ◽  
pp. 406-409 ◽  
Author(s):  
Caroline E. J. M. L. J. Terquem

We discuss the transport of angular momentum induced by tidal effects in a disk surrounding a star in a pre–main sequence binary system. We consider the effect of both density and bending waves. Although tidal effects are important for truncating protostellar disks and for determining their size, it is unlikely that tidally–induced angular momentum transport plays a dominant role in the evolution of protostellar disks. Where the disk is magnetized, transport of angular momentum is probably governed by MHD turbulence. In a non self–gravitating laminar disk, the amount of transport provided by tidal waves is probably too small to account for the lifetime of protostellar disks. In addition, tidal effects tend to be localized in the disk outer regions.

2015 ◽  
Vol 11 (A29B) ◽  
pp. 661-666
Author(s):  
Othman Benomar ◽  
Masao Takata ◽  
Hiromoto Shibahashi ◽  
Tugdual Ceillier ◽  
Rafael A. García

AbstractThe rotation rates in the interior and at the surface is determined for the 22 main-sequence stars with masses between 1.0 and 1.6 M⊙. The average interior rotation is measured using asteroseismology, while the surface rotation is measured by the spectroscopic v sin i or the periodic light variation due to surface structures, such as spots. It is found that the difference between the surface rotation rate determined by spectroscopy and the average rotation rate for most of stars is small enough to suggest that an efficient process of angular momentum transport operates during and/or before the main-sequence stage of stars. By comparing the surface rotation rate measured from the light variation with those measured by spectroscopy, we found hints of latitudinal differential rotation. However, this must be confirmed by a further study because our result is sensitive to a few data points.


Solar Physics ◽  
1990 ◽  
Vol 128 (1) ◽  
pp. 287-298 ◽  
Author(s):  
C. Vigneron ◽  
A. Mangeney ◽  
C. Catala ◽  
E. Schatzman

2004 ◽  
Vol 155 ◽  
pp. 409-410 ◽  
Author(s):  
Takayoshi Sano ◽  
Shu-ichiro Inutsuka ◽  
Neal J. Turner ◽  
James M. Stone

1997 ◽  
Vol 163 ◽  
pp. 704-704
Author(s):  
Charles F. Gammie

AbstractIn the outer parts of disks in active galactic nuclei and around young stellar objects (YSOs) the internal sources of heat may be too weak to prevent gravitational instability. We are thus motivated to examine the nonlinear outcome of gravitational instability in an optically thick disk. We use height-integrated, two-dimensional numerical simulations that include pressure (the gas has a polytropic equation of state), self-gravity, and cooling. The cooling function is calculated using a one-zone model and is characterized by a single dimensionless parameter τcool, which is the ratio of the cooling time to the orbital period. The simulations are done in the context of a local model of the disk (the “shearing sheet”). We also include the possibility of an effective “viscosity” characterized by a dimensionless parameter α.We find that the gravitational instability in thin, Keplerian disks leads to sustained angular momentum transport that is essentially local in character. Instability drives Q toward 1.7, and provides an angular momentum flux αeff ≃ 0.4/τcool. The disk breaks up when the cooling time is shorter than the dynamical time, which is equivalent to saying that αeff < 1. We conclude that gravitational instability can raise the angular momentum transport rate in the outer parts of AGN and YSO disks (although YSO disks may be too thick for our local approach to be strictly applicable). This can occur over a factor of a few in radius. The gravitationally dominated region is bounded on the inside by that radius where other heating processes (e.g. MHD turbulence driven by the Balbus-Hawley instability) make Q > 1. It is bounded on the outside by that radius where the cooling time is shorter than the dynamical time, or the disk is optically thin so that the equation of state is soft. At larger radius the disk will be clumpy.


Sign in / Sign up

Export Citation Format

Share Document