scholarly journals Age-Metallicity Relation: Comparison of Open Clusters' Data with Stellar Populations

1996 ◽  
Vol 171 ◽  
pp. 351-351
Author(s):  
Giovanni Carraro ◽  
Yuen K. Ng

The age–metallicity relation (AMR) from the Old Open Clusters population (Carraro & Chiosi, 1994; Friel & Janes, 1993) is compared with the disc stellar populations obtained from a recently developed model of the Milky Way by Ng 1994. A picture for the chemical evolution of the disc is presented in which the presence of a newly discovered Bar population (t = 8–9 Gyr, Z = 0.005–0.030) is taken into account. We suggest that the past history of the Galactic Disc has been significantly influenced by infall of metal poor gas from the halo and accretion events. The results are shown in Fig. 1.

2018 ◽  
Vol 609 ◽  
pp. A79 ◽  
Author(s):  
M. R. Hayden ◽  
A. Recio-Blanco ◽  
P. de Laverny ◽  
S. Mikolaitis ◽  
G. Guiglion ◽  
...  

Context. There have been conflicting results with respect to the extent that radial migration has played in the evolution of the Galaxy. Additionally, observations of the solar neighborhood have shown evidence of a merger in the past history of the Milky Way that drives enhanced radial migration. Aims. We attempt to determine the relative fraction of stars that have undergone significant radial migration by studying the orbital properties of metal-rich ([Fe/H] > 0.1) stars within 2 kpc of the Sun. We also aim to investigate the kinematic properties, such as velocity dispersion and orbital parameters, of stellar populations near the Sun as a function of [Mg/Fe] and [Fe/H], which could show evidence of a major merger in the past history of the Milky Way. Methods. We used a sample of more than 3000 stars selected from the fourth internal data release of the Gaia-ESO Survey. We used the stellar parameters from the Gaia-ESO Survey along with proper motions from PPMXL to determine distances, kinematics, and orbital properties for these stars to analyze the chemodynamic properties of stellar populations near the Sun. Results. Analyzing the kinematics of the most metal-rich stars ([Fe/H] > 0.1), we find that more than half have small eccentricities (e< 0.2) or are on nearly circular orbits. Slightly more than 20% of the metal-rich stars have perigalacticons Rp> 7 kpc. We find that the highest [Mg/Fe], metal-poor populations have lower vertical and radial velocity dispersions compared to lower [Mg/Fe] populations of similar metallicity by ~10 km s-1. The median eccentricity increases linearly with [Mg/Fe] across all metallicities, while the perigalacticon decreases with increasing [Mg/Fe] for all metallicities. Finally, the most [Mg/Fe]-rich stars are found to have significant asymmetric drift and rotate more than 40 km s-1 slower than stars with lower [Mg/Fe] ratios. Conclusions. While our results cannot constrain how far stars have migrated, we propose that migration processes are likely to have played an important role in the evolution of the Milky Way, with metal-rich stars migrating from the inner disk toward to solar neighborhood and past mergers potentially driving enhanced migration of older stellar populations in the disk.


2018 ◽  
Vol 14 (A30) ◽  
pp. 257-257
Author(s):  
Friedrich Anders ◽  
Ivan Minchev ◽  
Cristina Chiappini

AbstractThe time evolution of the radial metallicity gradient is one of the most important constraints for Milky Way chemical and chemo-dynamical models. In this talk we reviewed the status of the observational debate and presented a new measurement of the age dependence of the radial abundance gradients, using combined asteroseismic and spectroscopic observations of red giant stars. We compared our results to state-of-the-art chemo-dynamical Milky Way models and recent literature results obtained with open clusters and planetary nebulae, and propose a new method to infer the past history of the Galactic radial abundance profile.


2002 ◽  
Vol 187 ◽  
pp. 47-56
Author(s):  
N. Prantzos

Progress in the theory of galactic chemical evolution has been very slow and it is only in the solar neighborhood that observations constrain seriously the parameters of the various models. The history revealed on the basis of these data allows only for a small depletion of deuterium (D), less than a factor of 3 from its pregalactic value (Sec. 2.1). The observational data for the rest of the Milky Way disk are much less constraining for the models. They suggest, however, that a much larger astration (and, hence, D depletion) has taken place in the inner Galaxy; the resulting D gradient, measurable by the future FUSE-LYMAN mission, should provide invaluable information as to the past history of the disk (Sec. 2.2). Also, assuming that our Galaxy is a typical spiral, one can calculate the properties of disk galaxies as a function of redshift (in the framework of a given cosmological model) and compare to the observed properties of the extragalactic universe: global star formation rate, gas content and metal abundances in gas clouds. It turns out that D can be considerably depleted in galaxy disks, but only at low redshifts (Sec. 2.3).


2009 ◽  
Vol 5 (S265) ◽  
pp. 317-324 ◽  
Author(s):  
Walter J. Maciel ◽  
Roberto D. D. Costa

AbstractRadial metallicity gradients are observed in the disks of the Milky Way and in several other spiral galaxies. In the case of the Milky Way, many objects can be used to determine the gradients, such as HII regions, B stars, Cepheids, open clusters and planetary nebulae. Several elements can be studied, such as oxygen, sulphur, neon, and argon in photoionized nebulae, and iron and other elements in cepheids, open clusters and stars. As a consequence, the number of observational characteristics inferred from the study of abundance gradients is very large, so that in the past few years they have become one of the main observational constraints of chemical evolution models. In this paper, we present some recent observational evidences of abundance gradients based on several classes of objects. We will focus on (i) the magnitude of the gradients, (ii) the space variations, and (iii) the evidences of a time variation of the abundance gradients. Some comments on recent theoretical models are also given, in an effort to highlight their predictions concerning abundance gradients and their variations.


2019 ◽  
Vol 492 (1) ◽  
pp. L61-L65 ◽  
Author(s):  
Chervin F P Laporte ◽  
Vasily Belokurov ◽  
Sergey E Koposov ◽  
Martin C Smith ◽  
Vanessa Hill

ABSTRACT Using Gaia second data release (DR2), we trace the Anticentre Stream (ACS) in various stellar populations across the sky and find that it is kinematically and spatially decoupled from the Monoceros Ring. Using stars from lamost and segue, we show that the ACS is systematically more metal-poor than Monoceros by 0.1 dex with indications of a narrower metallicity spread. Furthermore, the ACS is predominantly populated of old stars ($\sim 10\, \rm {Gyr}$), whereas Monoceros has a pronounced tail of younger stars ($6-10\, \rm {Gyr}$) as revealed by their cumulative age distributions. Put together, all of this evidence support predictions from simulations of the interaction of the Sagittarius dwarf with the Milky Way, which argue that the ACS is the remains of a tidal tail of the Galaxy excited during Sgr’s first pericentric passage after it crossed the virial radius, whereas Monoceros consists of the composite stellar populations excited during the more extended phases of the interaction. Importantly, the ACS can be viewed as a stand-alone fossil of the chemical enrichment history of the Galactic disc.


2018 ◽  
Vol 14 (A30) ◽  
pp. 242-243
Author(s):  
Maosheng Xiang

AbstractStellar metallicity gradients set important constraints on the formation and evolution history of the Milky Way. We present radial and vertical metallicity gradients of the Galactic disc for mono-age stellar populations from the LAMOST Galactic Surveys, and discuss their constraints on the disc assemblage history.


2012 ◽  
Vol 10 (H16) ◽  
pp. 372-372
Author(s):  
Rok Roškar

AbstractIn recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.


1877 ◽  
Vol 25 (171-178) ◽  

George Poulett Scrope. It is scarcely possible at the present day to realize the conditions of that intellectual “reign of terror” which prevailed at the commencement of the present century, as the consequence of the unreasoning prejudice and wild alarm excited by the early progress of geological inquiry. At that period, every attempt to explain the past history of the earth by a reference to the causes still in operation upon it was met, not by argument, but by charges of atheism against its propounder; and thus Hutton’s masterly fragment of a ‘Theory of the Earth,’ Playfair’s persuasive‘ Illustrations,’ and Hall’s records of accurate observation and ingenious experiment had come to be inscribed m a social Index Expurgatorius ,and for a while, indeed, might have seemed to be consigned to total oblivion. Equally injurious suspicions were aroused against the geologist who dared to make allusion to the important part which igneous forces have undoubtedly played in the formation of certain rocks; for the authority of Werner had acquired an almost sacred cha­racter; and “ Vulcanists ” and “ Huttonians ” were equally objects of aversion and contempt. To two men who have very recently—and within a few months of one another—passed away from our midst, science is indebted for boldly en­countering and successfully overcoming this storm of prejudice. Hutton and his friends lived a generation too soon ; and thus it was reserved tor Lyell and Scrope to carry out the task which the great Scotch philosopher had failed to accomplish, namely, the removal of geology from the domain of speculation to that of inductive science.


2018 ◽  
Vol 618 ◽  
pp. A93 ◽  
Author(s):  
T. Cantat-Gaudin ◽  
C. Jordi ◽  
A. Vallenari ◽  
A. Bragaglia ◽  
L. Balaguer-Núñez ◽  
...  

Context. Open clusters are convenient probes of the structure and history of the Galactic disk. They are also fundamental to stellar evolution studies. The second Gaia data release contains precise astrometry at the submilliarcsecond level and homogeneous photometry at the mmag level, that can be used to characterise a large number of clusters over the entire sky. Aims. In this study we aim to establish a list of members and derive mean parameters, in particular distances, for as many clusters as possible, making use of Gaia data alone. Methods. We compiled a list of thousands of known or putative clusters from the literature. We then applied an unsupervised membership assignment code, UPMASK, to the Gaia DR2 data contained within the fields of those clusters. Results. We obtained a list of members and cluster parameters for 1229 clusters. As expected, the youngest clusters are seen to be tightly distributed near the Galactic plane and to trace the spiral arms of the Milky Way, while older objects are more uniformly distributed, deviate further from the plane, and tend to be located at larger Galactocentric distances. Thanks to the quality of Gaia DR2 astrometry, the fully homogeneous parameters derived in this study are the most precise to date. Furthermore, we report on the serendipitous discovery of 60 new open clusters in the fields analysed during this study.


Sign in / Sign up

Export Citation Format

Share Document