Taphonomic investigations of owl pellets

Paleobiology ◽  
1979 ◽  
Vol 5 (3) ◽  
pp. 275-284 ◽  
Author(s):  
Peter Dodson ◽  
Diane Wexlar

Owls are important consumers of small vertebrates, and because they regurgitate pellets rich in bone, they may be important potential contributors of the concentrated remains of small vertebrates to the fossil record. Owls of three sizes, the large great horned owl (Bubo virginianus), the medium-sized barn owl (Tyto alba), and the small screech owl (Otus asio), were fed a common diet of mice. The bony contents of the pellets were analyzed to determine the amount of bone loss by digestion, bone completeness, and sites of bone breakage. For all three species, only about half the number of bones ingested were recovered in the pellets. Mandibles and femora were most abundant, and pelves and scapulae were the least abundant. Screech owls broke 80% of the cranial and limb elements, barn owls only 30%. Skulls fared poorly in great horned and screech owl pellets, while barn owls returned 80% of the skulls intact, with only the caudal portion of the cranium damaged; barn owls also returned articulated strings of vertebrae and complete paws. These results provide a baseline for the recognition of owls as agents of accumulation of small bones in the fossil record and suggest that the actions of ancient predators may be revealed by species-specific patterns of bone destruction of an assemblage of fossil prey species.

Paleobiology ◽  
1981 ◽  
Vol 7 (4) ◽  
pp. 533-552 ◽  
Author(s):  
Jennifer A. Kitchell ◽  
Christofer H. Boggs ◽  
James F. Kitchell ◽  
James A. Rice

Because predation by drilling gastropods is uniquely preservable in the fossil record, it represents important evidence for the study of coevolution. Previous studies of drilling gastropod predation have been largely descriptive and sometimes contradictory. We formulate and test a model of prey selection by naticid drilling gastropods. The model adequately predicts both prey species selection and prey size selection. Prey preferences parallel prey profitabilities, determined by calculating prey species-specific and predator size-specific cost-benefit functions. The model also specifically suggests the evolution of potential refugia from predation and the evolution of potential predatory attributes. Application of the model to several Miocene and Pliocene assemblages studied by Thomas (1976) corroborates the feasibility and utility of this approach in examining the evolutionary record of naticid predation, which extends from the Late Mesozoic. Apparent evolutionary stasis and convergent morphological trends among prey species may be consistent with continuous selection pressures against predation.


Author(s):  
Jenő Purger J.

Pellets were collected between 1995 and 2016, from 53 localities (investigated area: XL89, XL99, YL08, YL09, XM52, XM61, XM62, XM70, XM72, XM74, XM80, XM81, XM82, XM83, XM84, XM90, XM91, XM93, XM95, YM02, YM03, YM12, YM13, YM14, YM22, YM23, YM24 and BS73, according to 10×10 km UTM grids). In a total of 5164 Barn Owl pellets 14360 prey remnants were found. In the diet of Barn Owls small mammals dominated (98.6%). From the prey items the presence of 27 mammal species (Croci-dura leucodon, C. suaveolens, Sorex araneus, S. minutus, Neomys anomalus, N. fodiens, Talpa europaea, Eptesi-cus serotinus, Nyctalus leisleri, N. noctula, Myotis myotis, Muscardinus avellanarius, Microtus agrestis, M. arvalis, M. subterraneus, Arvicola amphibius, Myodes glareolus, Apo-demus agrarius, A. flavicollis, A. sylvaticus, A. uralensis, Micromys minutus, Mus musculus, M. spicilegus, Rattus norvegicus, R. rattus, Mustela nivalis) was confirmed. Rem-nants of birds, amphibians and insects made up only 1.4% of total prey.


2021 ◽  
Vol 785 ◽  
pp. 147403
Author(s):  
Ségolène Humann-Guilleminot ◽  
Shirley Laurent ◽  
Pierre Bize ◽  
Alexandre Roulin ◽  
Gaétan Glauser ◽  
...  

Author(s):  
Vivien Cosandey ◽  
Robin Séchaud ◽  
Paul Béziers ◽  
Yannick Chittaro ◽  
Andreas Sanchez ◽  
...  

AbstractBird nests are specialized habitats because of their particular composition including nest detritus and bird droppings. In consequence, they attract a specialized arthropod community considered as nidicolous, which includes species only found in bird nests (strictly nidicolous) or sometimes found in bird nests (facultatively nidicolous). Because the factors influencing the entomofauna in bird nests are poorly understood, in autumn 2019, we collected nest material in 86 Barn Owl (Tyto alba) nest boxes. We investigated whether the invertebrate species richness was related to Barn Owl nest box occupancy, the density of available nest boxes and the landscape structure. We found 3,321 nidicolous beetle specimens belonging to 24 species. Species richness of strictly nidicolous beetles was 2.7 times higher in nest boxes occupied by a family of Barn Owls the previous spring compared to unoccupied nest boxes. It was also higher in sites that were more often occupied by Barn Owls in the five previous years and in areas surrounded by a higher proportion of crop fields. For facultatively nidicolous beetles, the density of Barn Owl nest boxes enhanced the species richness. In conclusion, our study suggests that the strictly nidicolous beetles benefit from occupied nest boxes of Barn Owls, whereas facultatively nidicolous beetles look for nest boxes independently of whether Barn Owls occupy them. Our study highlights the importance of bird nests for a suite of invertebrates.


2021 ◽  
pp. 175815592110660
Author(s):  
Jenő J Purger ◽  
Dávid Szép

The relative abundance of small mammal species detected from Common Barn-owl pellets reflects the landscape structure and habitat pattern of the owl’s hunting area, but it is also affected by the size of the collected pellet sample and the size of the supposed hunting area. The questions arise: how many pellets should be collected and analyzed as well as how large hunting area should be taken into consideration in order to reach the best correspondence between the owl’s prey composition and the distribution of habitats preferred by small mammals preyed in supposed hunting areas? For this study, we collected 1045 Common Barn-owl pellets in a village in southern Hungary. All detected small mammal species were classified into functional groups (guilds) preferring urban, open, forest and wetland habitats. The proportion of functional groups was compared to the proportion of these habitats around the pellet collection site within circles of one, two, and three km radius. Saturation curves showed that at least 300 pellets or ca. 600 mammalian remains are required for the detection of the 19 small mammal species. The share of small mammals detected in the prey and their functional groups according to their habitat preference showed an increasing consistency with the distribution of real habitats in the potential hunting area of a radius of 3 km around the owl’s breeding or resting place.


2009 ◽  
Vol 54 (1) ◽  
pp. 104-107 ◽  
Author(s):  
Steven G. Platt ◽  
Thomas R. Rainwater ◽  
Daniel J. Leavitt ◽  
Stanlee M. Miller
Keyword(s):  

2014 ◽  
Vol 6 (9) ◽  
pp. 6204-6213
Author(s):  
A. Mohamed Samsoor Ali ◽  
R. Santhanakrishnan
Keyword(s):  

Bird Study ◽  
2019 ◽  
Vol 66 (4) ◽  
pp. 570-573
Author(s):  
Robin Séchaud ◽  
Ana Paula Machado ◽  
Kim Schalcher ◽  
Céline Simon ◽  
Alexandre Roulin
Keyword(s):  

2002 ◽  
Vol 22 (17) ◽  
pp. 7671-7679 ◽  
Author(s):  
M. Fabiana Kubke ◽  
Dino P. Massoglia ◽  
Catherine E. Carr

Sign in / Sign up

Export Citation Format

Share Document