Life-history and the evolution of ontogeny in the ostracode genus Cyprideis

Paleobiology ◽  
1990 ◽  
Vol 16 (2) ◽  
pp. 107-125 ◽  
Author(s):  
Peter N. Schweitzer ◽  
G. P. Lohmann

A large body of paleontological literature concerns the importance of ontogeny as a source of morphological variation for evolution; morphologies that appear during one stage of an organism's development are made available for use in another simply by modifying the developmental program. Paleontologists need to know why this occurs, so they can study the process of evolution in extinct animals and so they can discuss the fossil record in terms that are applicable to modern forms. If most cases of heterochrony can be attributed to life-history evolution then the fossil record provides evidence of the nature of selection (in particular the age-specific mortality) that extinct animals experienced. The hypothesis of interest here is that species in which maturity is accelerated will also show generalized morphology and small size, while those with delayed maturity will have more specialized morphology and large size.Four species of the ostracode genus Cyprideis were studied to determine whether differences in age at maturity are correlated with heterochrony in the expected manner. For each species the changes in size and shape through geological time were evaluated in the statistical context of modern geographic and seasonal variation. Living populations were sampled regularly to detect differences in seasonality and to estimate the duration of development.Evolution of ontogeny is apparent at the level of species in this group, but it is not simply related to differences in life-history. In comparisons among species, we find evidence of heterochrony where there is no difference in the age at maturity, and a difference in age at maturity where there is no heterochrony. Similarly, three of the four species show the expected positive correlation between size and age at maturity, yet the fourth species is relatively large and matures rapidly. Cyprideis does not support the generalization that life-history evolution causes heterochrony, and casts doubt on the inference of life-history evolution from heterochrony where the data are drawn exclusively from extinct forms.

2010 ◽  
Vol 59 (5) ◽  
pp. 504-517 ◽  
Author(s):  
Jonathan M. Waters ◽  
Diane L. Rowe ◽  
Christopher P. Burridge ◽  
Graham P. Wallis

2015 ◽  
Vol 8 (7) ◽  
pp. 635-649 ◽  
Author(s):  
Emilie Snell‐Rood ◽  
Rickey Cothran ◽  
Anne Espeset ◽  
Punidan Jeyasingh ◽  
Sarah Hobbie ◽  
...  

2006 ◽  
Vol 84 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Stephen P. Bonser ◽  
Lonnie W. Aarssen

Generalisations of life histories in plants are often framed in terms of allocation to reproduction. For example, relative allocation to reproduction is commonly found to be higher in semelparous than in iteroparous plant species. However, the association between vegetative traits and life history has been largely unexplored. In higher plants, reproductive and vegetative function can be measured in terms of meristem allocation. Under this approach, two vegetative traits (apical dominance (the suppression of axillary meristem development) and branching intensity (the commitment of axillary meristems to branches)) can be measured as well as one reproductive trait (reproductive effort). We used phylogenetically independent contrasts to compare reproductive and vegetative function in annual semelparous and perennial iteroparous species. Twenty congeneric species pairs (each species pair represented by one semelparous and one iteroparous species) across nine families were selected based on availability of herbarium specimens. Semelparous life-history evolution was associated with higher reproductive effort. Conversely, iteroparous life-history evolution was associated with higher apical dominance. Branching intensity was not associated with life history. An evolutionary association between life history and apical dominance but not branching intensity suggests a complex relationship between allocation to vegetative traits and the evolution of plant strategies across environments.


Oikos ◽  
1982 ◽  
Vol 38 (1) ◽  
pp. 118 ◽  
Author(s):  
William J. Etges

Sign in / Sign up

Export Citation Format

Share Document