species trees
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 130)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Author(s):  
XiaoXu Pang ◽  
Da-Yong Zhang

The species studied in any evolutionary investigation generally constitute a very small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has been rarely studied and is thus poorly understood. In this study, we use mathematical analysis and simulations to examine the robustness of species tree methods based on a multispecies coalescent model under gene flow sourcing from an extant or ghost lineage. We found that very low levels of extant or ghost introgression can result in anomalous gene trees (AGTs) on three-taxon rooted trees if accompanied by strong incomplete lineage sorting (ILS). In contrast, even massive introgression, with more than half of the recipient genome descending from the donor lineage, may not necessarily lead to AGTs. In cases involving an ingroup lineage (defined as one that diverged no earlier than the most basal species under investigation) acting as the donor of introgression, the time of root divergence among the investigated species was either underestimated or remained unaffected, but for the cases of outgroup ghost lineages acting as donors, the divergence time was generally overestimated. Under many conditions of ingroup introgression, the stronger the ILS was, the higher was the accuracy of estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.


Author(s):  
Paul Zaharias ◽  
Tandy Warnow

With the increased availability of sequence data and even of fully sequenced and assembled genomes, phylogeny estimation of very large trees (even of hundreds of thousands of sequences) is now a goal for some biologists. Yet, the construction of these phylogenies is a complex pipeline presenting analytical and computational challenges, especially when the number of sequences is very large. In the last few years, new methods have been developed that aim to enable highly accurate phylogeny estimations on these large datasets, including divide-and-conquer techniques for multiple sequence alignment and/or tree estimation, methods that can estimate species trees from multi-locus datasets while addressing heterogeneity due to biological processes (e.g., incomplete lineage sorting and gene duplication and loss), and methods to add sequences into large gene trees or species trees. Here we present some of these recent advances and discuss opportunities for future improvements.


2022 ◽  
Vol 12 ◽  
Author(s):  
Martha Kandziora ◽  
Petr Sklenář ◽  
Filip Kolář ◽  
Roswitha Schmickl

A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261612
Author(s):  
Faver Álvarez ◽  
Fernando Casanoves ◽  
Juan Carlos Suárez

Trees dispersed in grazing areas are contribute to the sustainability of livestock systems. The interactions between trees and soil are ecological processes that allow the modification of the biology, fertility, and physics of the soil. This study was aimed to assess the influence of dispersed trees in pastures on soil properties in grazing areas for dual-purpose cattle systems in the Piedmont region of the Colombian Amazon. The work was done in grazing areas with scattered trees at the Centro de Investigaciones Amazónicas CIMAZ–Macagual in Florencia—Caquetá—Colombia. We evaluated the effect of five tree species, Andira inermis, Bellucia pentámera, Guarea Guidonia, Psidium guajava and Zygia longifolia, on soil properties (up to 30 cm soil depth) under and outside the influence of the crown. Under the tree crown, three points were systematically taken in different cardinal positions. This was done at a distance corresponding to half the radius of the tree crown. The sampling points in the open pasture area (out of crown) were made in the same way, but at 15 m from the crown border. The ANOVA showed significant interaction (P < 0.0001) between tree species and location for macrofauna abundance up to 30 cm soil depth. For this reason, we performed the comparison between locations for each tree species. Chemical soil variables up to 10 cm soil depth only showed interaction of tree species-location for exchangeable potassium (P = 0.0004). Soil physical soil characteristics up to 30 cm soil depth only showed interaction of tree species-location at 20 cm soil depth (P = 0.0003). The principal component analysis for soil properties explained 61.1% of the total variability of the data with the two first axes. Using Monte Carlo test, we found crown effect for all species. Trees help to control exchangeable mineral elements that can affect the soil, potentiate basic cations such as magnesium and potassium, increase the abundance of soil macrofauna; but some trees with high ground level of shade in grazing areas could increase soil compaction due to the greater concentration of cattle in these areas.


Author(s):  
Nataliia Kendzora

Aim. The aim of the article is the following: to analyze the historical materials on the creation of the Botanical Garden arboretum; to investigate the age structure of the dendroflora collection; to study the taxonomic composition, biometric indicators, the sanitary condition of the age-old trees, and their significance in cultural phytocoenoses. Materials and Methods. The study is based on the materials of inventory of woody and shrub plants of the arboretum and literary sources related to the analysis of the quantitative and qualitative composition of the dendroflora collection. Results. Arboretum of the Botanical Garden of Ukrainian National Forestry University is one of the oldest dendrological collections in Lviv. The collection includes 28 age-old trees. Their age exceeds 100 years, biometric indicators are significant, and sanitary state, both for a specified age and taking into account urbogenic growth conditions, is good or satisfactory. Some age-old trees (black walnut, katsura-tree, American witch-hazel) are the oldest species in the West of Ukraine and have the largest biometric indicators. Conclusions. The arboretum of the Botanical Garden of UNFU is a unique heritage of garden and park art of the XIX century. The historical composition of the dendroflora is partially preserved. Among the age-old trees, there are both autochtonic and introduced species. Trees are in a good sanitary state. They are an integral part of the formed phytocoenosis. As an object of observation, they can be used for further research of potential ecological and biological capabilities of species in an urbogenic environment.


2021 ◽  
Author(s):  
Rohan S Mehta ◽  
Mike Steel ◽  
Noah A Rosenberg

Monophyly is a feature of a set of genetic lineages in which every lineage in the set is more closely related to all other members of the set than it is to any lineage outside the set. Multiple sets of lineages that are separately monophyletic are said to be reciprocally monophyletic, or jointly monophyletic. The prevalence of reciprocal monophyly, or joint monophyly, has been used to evaluate phylogenetic and phylogeographic hypotheses, as well as to delimit species. These applications often make use of a probability of joint monophyly under models of gene lineage evolution. Studies in coalescent theory have computed this joint monophyly probability for small numbers of separate groups in arbitrary species trees, and for arbitrary numbers of separate groups in trivial species trees. Here, generalizing existing results on monophyly probabilities under the multispecies coalescent, we derive the probability of joint monophyly for arbitrary numbers of separate groups in arbitrary species trees. We illustrate how our result collapses to previously examined cases. We also study the effect of tree height, sample size, and number of species on the probability of joint monophyly. The result also enables computation of relatively simple lower and upper bounds on the joint monophyly probability. Our results expand the scope of joint monophyly calculations beyond small numbers of species, subsuming past formulas that have been used in simpler cases.


2021 ◽  
Author(s):  
Rui Borges ◽  
Bastien Boussau ◽  
Sebastian Hoehna ◽  
Ricardo J Pereira ◽  
Carolin Kosiol

The availability of population genomic data through new sequencing technologies gives unprecedented opportunities for estimating important evolutionary forces such as genetic drift, selection, and mutation biases across organisms. Yet, analytical methods that can handle polymorphisms jointly with sequence divergence across species are rare and not easily accessible to empiricists. We implemented polymorphism-aware phylogenetic models (PoMos), an alternative approach for species tree estimation, in the Bayesian phylogenetic software RevBayes. PoMos naturally account for incomplete lineage sorting, which is known to cause difficulties for phylogenetic inference in species radiations, and scale well with genome-wide data. Simultaneously, PoMos can estimate mutation and selection biases. We have applied our methods to resolve the complex phylogenetic relationships of a young radiation of Chorthippus grasshoppers, based on coding sequences. In addition to establishing a well-supported species tree, we found a mutation bias favoring AT alleles and selection bias promoting the fixation of GC alleles, the latter consistent with GC-biased gene conversion. The selection bias is two orders of magnitude lower than genetic drift, validating the critical role of nearly neutral evolutionary processes in species radiation. PoMos offer a wide range of models to reconstruct phylogenies and can be easily combined with existing models in RevBayes - e.g., relaxed clock and divergence time estimation - offering new insights into the evolutionary processes underlying molecular evolution and, ultimately, species diversification.


2021 ◽  
Author(s):  
Simon Hellemans ◽  
Menglin Wang ◽  
Nonno Hasegawa ◽  
Jan Šobotník ◽  
Rudolf H. Scheffrahn ◽  
...  

AbstractThe phylogenetic history of termites has been investigated using mitochondrial genomes and transcriptomes. However, both sets of markers have limitations. Mitochondrial genomes represent a single genetic marker likely to yield phylogenetic trees presenting incongruences with species trees, and transcriptomes can only be obtained from well-preserved samples. In contrast, ultraconserved elements (UCEs) include a great many independent markers that can be retrieved from poorly preserved samples. Here, we designed termite-specific baits targeting 50,616 UCE loci. We tested our UCE bait set on 42 samples of termites and three samples of Cryptocercus, for which we generated low-coverage highly-fragmented genome assemblies and successfully extracted in silico between 3,426 to 42,860 non-duplicated UCEs per sample. Our maximum likelihood phylogenetic tree, reconstructed using the 5,934 UCE loci retrieved from upward of 75% of samples, was congruent with transcriptome-based phylogenies, demonstrating that our UCE bait set is reliable and phylogenetically informative. Combined with non-destructive DNA extraction protocols, our UCE bait set provides the tool needed to carry out a global taxonomic revision of termites based on poorly preserved specimens such as old museum samples. The Termite UCE database is maintained at: https://github.com/oist/TER-UCE-DB/.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Brian P. Bourke ◽  
Silvia A. Justi ◽  
Laura Caicedo-Quiroga ◽  
David B. Pecor ◽  
Richard C. Wilkerson ◽  
...  

Abstract Background Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector incrimination, control, and management, and for modelling future responses to climate change, deforestation, and human population expansion. This study attempts to further explore species diversity and evolutionary history in the Albitarsis Complex by undertaking a characterization and phylogenetic analysis of the mitogenome of all 10 putative taxa in the Albitarsis Complex. Methods Mitogenome assembly and annotation allowed for feature comparison among Albitarsis Complex and Anopheles species. Selection analysis was conducted across all 13 protein-coding genes. Maximum likelihood and Bayesian inference methods were used to construct gene and species trees, respectively. Bayesian methods were also used to jointly estimate species delimitation and species trees. Results Gene composition and order were conserved across species within the complex. Unique signatures of positive selection were detected in two species—Anopheles janconnae and An. albitarsis G—which may have played a role in the recent and rapid diversification of the complex. The COI gene phylogeny does not fully recover the mitogenome phylogeny, and a multispecies coalescent-based phylogeny shows that considerable uncertainty exists through much of the mitogenome species tree. The origin of divergence in the complex dates to the Pliocene/Pleistocene boundary, and divergence within the distinct northern South American clade is estimated at approximately 1 million years ago. Neither the phylogenetic trees nor the delimitation approach rejected the 10-species hypothesis, although the analyses could not exclude the possibility that four putative species with scant a priori support (An. albitarsis G, An. albitarsis H, An. albitarsis I, and An. albitarsis J), represent population-level, rather than species-level, splits. Conclusion The lack of resolution in much of the species tree and the limitations of the delimitation analysis warrant future studies on the complex using genome-wide data and the inclusion of additional specimens, particularly from two putative species, An. albitarsis I and An. albitarsis J. Graphical Abstract


2021 ◽  
Author(s):  
Jan Hsiao ◽  
Lola Chenxi Deng ◽  
Sreekanth H Chalasani ◽  
Eric Edsinger

Transient Potential Receptor (TRP) ion channels are a diverse superfamily of multimodal molecular sensors that respond to a wide variety of stimuli, including mechanical, chemical, and thermal. TRP channels are present in most eukaryotes but best understood in mammalian, worm, and fly genetic models, where they are expressed in diverse cell-types and commonly associated with the nervous system. Here, we characterized TRP superfamily gene and genome evolution to better understand origins and evolution of molecular sensors, brains, and behavior in animals and help advance development of novel genetic technologies, like sonogenetics. We developed a flexible push-button bioinformatic and phylogenomic pipeline, GIGANTIC, that generated genome-based gene and species trees and enabled phylogenetic characterization of challenging remote homologs and distantly-related organisms deep in evolution. We identified complete sets of TRP superfamily ion channels, with over 3000 genes in 22 animal phyla and 70 species having publicly-available sequenced genomes, including 3 unicellular outgroups. We then identified clusters of TRP family members in genomes, evaluated gene models per cluster, and repaired split gene models. We also produced whole-organism PacBio transcriptomes for five species to independently validate our gene model assessment and model repairs. We find that many TRP families exhibited numerous and often extensive expansions in different phyla. Some expansions represent local clusters on respective genomes, a trend that is likely undercounted due to varied quality in genome assemblies and annotations of non-model organisms. Our work expands known TRP diversity across animals, including addition of previously uncharacterized phyla and identification of unrecognized homologs in previously characterized species.


Sign in / Sign up

Export Citation Format

Share Document