gene trees
Recently Published Documents


TOTAL DOCUMENTS

629
(FIVE YEARS 216)

H-INDEX

70
(FIVE YEARS 9)

2022 ◽  
Author(s):  
XiaoXu Pang ◽  
Da-Yong Zhang

The species studied in any evolutionary investigation generally constitute a very small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has been rarely studied and is thus poorly understood. In this study, we use mathematical analysis and simulations to examine the robustness of species tree methods based on a multispecies coalescent model under gene flow sourcing from an extant or ghost lineage. We found that very low levels of extant or ghost introgression can result in anomalous gene trees (AGTs) on three-taxon rooted trees if accompanied by strong incomplete lineage sorting (ILS). In contrast, even massive introgression, with more than half of the recipient genome descending from the donor lineage, may not necessarily lead to AGTs. In cases involving an ingroup lineage (defined as one that diverged no earlier than the most basal species under investigation) acting as the donor of introgression, the time of root divergence among the investigated species was either underestimated or remained unaffected, but for the cases of outgroup ghost lineages acting as donors, the divergence time was generally overestimated. Under many conditions of ingroup introgression, the stronger the ILS was, the higher was the accuracy of estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.


Author(s):  
Paul Zaharias ◽  
Tandy Warnow

With the increased availability of sequence data and even of fully sequenced and assembled genomes, phylogeny estimation of very large trees (even of hundreds of thousands of sequences) is now a goal for some biologists. Yet, the construction of these phylogenies is a complex pipeline presenting analytical and computational challenges, especially when the number of sequences is very large. In the last few years, new methods have been developed that aim to enable highly accurate phylogeny estimations on these large datasets, including divide-and-conquer techniques for multiple sequence alignment and/or tree estimation, methods that can estimate species trees from multi-locus datasets while addressing heterogeneity due to biological processes (e.g., incomplete lineage sorting and gene duplication and loss), and methods to add sequences into large gene trees or species trees. Here we present some of these recent advances and discuss opportunities for future improvements.


2022 ◽  
Vol 12 ◽  
Author(s):  
Martha Kandziora ◽  
Petr Sklenář ◽  
Filip Kolář ◽  
Roswitha Schmickl

A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Monique Aouad ◽  
Jean-Pierre Flandrois ◽  
Frédéric Jauffrit ◽  
Manolo Gouy ◽  
Simonetta Gribaldo ◽  
...  

Abstract Background The recent rise in cultivation-independent genome sequencing has provided key material to explore uncharted branches of the Tree of Life. This has been particularly spectacular concerning the Archaea, projecting them at the center stage as prominently relevant to understand early stages in evolution and the emergence of fundamental metabolisms as well as the origin of eukaryotes. Yet, resolving deep divergences remains a challenging task due to well-known tree-reconstruction artefacts and biases in extracting robust ancient phylogenetic signal, notably when analyzing data sets including the three Domains of Life. Among the various strategies aimed at mitigating these problems, divide-and-conquer approaches remain poorly explored, and have been primarily based on reconciliation among single gene trees which however notoriously lack ancient phylogenetic signal. Results We analyzed sub-sets of full supermatrices covering the whole Tree of Life with specific taxonomic sampling to robustly resolve different parts of the archaeal phylogeny in light of their current diversity. Our results strongly support the existence and early emergence of two main clades, Cluster I and Cluster II, which we name Ouranosarchaea and Gaiarchaea, and we clarify the placement of important novel archaeal lineages within these two clades. However, the monophyly and branching of the fast evolving nanosized DPANN members remains unclear and worth of further study. Conclusions We inferred a well resolved rooted phylogeny of the Archaea that includes all recently described phyla of high taxonomic rank. This phylogeny represents a valuable reference to study the evolutionary events associated to the early steps of the diversification of the archaeal domain. Beyond the specifics of archaeal phylogeny, our results demonstrate the power of divide-and-conquer approaches to resolve deep phylogenetic relationships, which should be applied to progressively resolve the entire Tree of Life.


2021 ◽  
Vol 14 (1) ◽  
pp. e3713
Author(s):  
Luis Castro Rodríguez ◽  
Bernal León ◽  
Lisbeth Ramírez Carvajal

Introduction: The sylvatic cycle of rabies is a significant sanitary burden in Central America. The Costa Rican government monitors cases since 1985 and infections from bats are still reported for wild animals, livestock, and humans, generating a need of further pathogen characterization in the region. Objective: To compare rabies phylogenetic analyses from complete genomes with nucleoprotein gene studies. Methods: For the phylogenetic analyses we used four rabies tissue samples collected in 2018, and generated complete genomes by Next-Generation sequencing (NGS). We also extracted RNA from tissues of confirmed cases and generated ssDNA using several primers. Double-stranded DNA was generated and used to generate genomic libraries. Results: We describe, for the first-time, the complete genome of four sequences of the rabies virus isolated in Costa Rica in 2018. Complete genome trees resembled the topology of nucleoprotein gene trees. All isolates were related to Desmodus rotundus. One sample group into Lineage (L)2, and the remaining samples group in L1, matched previous reports from regional rabies viruses. Conclusion: Our method produces valid viral assemblies from clinical specimens without target enrichment or viral isolation. 


2021 ◽  
Author(s):  
Adrian F. Powell ◽  
Jing Zhang ◽  
Duncan Hauser ◽  
Julianne Vilela ◽  
Alice Hu ◽  
...  

The tomato family, Solanaceae, is a model clade for a wide range of applied and basic research questions. Currently, reference-quality genomes are available for over 30 species from seven genera, and these include numerous crops as well as wild species (e.g., Jaltomata sinuosa and Nicotiana attenuata). Here we present the genome of the showy-flowered Andean shrub Iochroma cyaneum, a woody lineage from the tomatillo subfamily Physalideae. The assembled size of the genome (2.7Gb) is more similar in size to chilipepper (2.6Gb) than to other sequenced diploid members of the berry clade of Solanaceae (e.g., potato, tomato, and Jaltomata). Our assembly recovers 92% of the conserved orthologous set, suggesting a nearly complete genome for this species. Most of the genomic content is repetitive (69%), with gyspy elements alone accounting for 52% of the genome. Despite the large amount of repetitive content, most of the 12 Iochroma chromosomes are highly syntenic with tomato. Bayesian concordance analysis provides strong support for the berry clade, including Iochroma, but reveals extensive discordance along the backbone, with placement of pepper and Jaltomata being highly variable across gene trees. The Iochroma genome contributes to a growing wealth of genomic resources in Solanaceae and underscores the need for expanded sampling of diverse berry genomes to dissect major morphological transitions.


2021 ◽  
Author(s):  
Peter O Mulhair ◽  
Charley GP McCarthey ◽  
Karen Siu-Ting ◽  
Christopher J Creevey ◽  
Mary J O'Connell

Conflicting studies place a group of bilaterian invertebrates containing xenoturbellids and acoelomorphs, the Xenacoelomorpha, as either the primary emerging bilaterian phylum, or within Deuterostomia, sister to Ambulacraria. While their placement as sister to the rest of Bilateria supports relatively simple morphology in the ancestral bilaterian, their alternative placement within Deuterostomia suggests a morphologically complex ancestral Bilaterian along with extensive loss of major phenotypic traits in the Xenacoelomorpha. More recently, further studies have brought into question whether Deuterostomia should be considered monophyletic at all. Hidden paralogy presents a major challenge for reconstructing species phylogenies. Here we assess whether hidden paralogy has contributed to the conflict over the placement of Xenacoelomorpha. Our approach assesses previously published datasets, enriching for orthogroups whose gene trees support well resolved clans elsewhere in the animal tree of life. We find that the majority of constituent genes in previously published datasets violate incontestable clans, suggesting that hidden paralogy is rife at this depth. We demonstrate that enrichment for genes with orthologous signal alters the final topology that is inferred, whilst simultaneously improving fit of the model to the data. We discover increased, but ultimately not conclusive, support for the existence of Xenambulacraria in our orthology enriched set of genes. At a time when we are steadily progressing towards sequencing all of life on the planet, we argue that long-standing contentious issues in the tree of life will be resolved using smaller amounts of better quality data that can be modelled adequately.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianxiang Ma ◽  
Pengchuan Sun ◽  
Dandan Wang ◽  
Zhenyue Wang ◽  
Jiao Yang ◽  
...  

AbstractMost extant angiosperms belong to Mesangiospermae, which comprises eudicots, monocots, magnoliids, Chloranthales and Ceratophyllales. However, phylogenetic relationships between these five lineages remain unclear. Here, we report the high-quality genome of a member of the Chloranthales lineage (Chloranthus sessilifolius). We detect only one whole genome duplication within this species and find that polyploidization events in different Mesangiospermae lineage are mutually independent. We also find that the members of all floral development-related gene lineages are present in C. sessilifolius despite its extremely simplified flower. The AP1 and PI genes, however, show a weak floral tissue-specialized expression. Our phylogenomic analyses suggest that Chloranthales and magnoliids are sister groups, and both are together sister to the clade comprising Ceratophyllales and eudicots, while the monocot lineage is sister to all other Mesangiospermae. Our findings suggest that in addition to hybridization, incomplete lineage sorting may largely account for phylogenetic inconsistencies between the observed gene trees.


2021 ◽  
Author(s):  
Diego F. Morales-Briones ◽  
Nan Lin ◽  
Eileen Y. Huang ◽  
Dena L. Grossenbacher ◽  
James M. Sobel ◽  
...  

Premise of the study: Phylogenomic datasets using genomes and transcriptomes provide rich opportunities beyond resolving bifurcating phylogenetic relationships. Monkeyflower (Phrymaceae) is a model system for evolutionary ecology. However, it lacks a well-supported phylogeny for a stable taxonomy and for macroevolutionary comparisons. Methods: We sampled 24 genomes and transcriptomes in Phrymaceae and closely related families, including eight newly sequenced transcriptomes. We reconstructed the phylogeny using IQ-TREE and ASTRAL, evaluated gene tree discordance using PhyParts, Quartet Sampling, and cloudogram, and carried out phylogenetic network analyses using PhyloNet and HyDe. We searched for whole genome duplication (WGD) events using chromosome numbers, synonymous distance, and gene duplication events. Key results: Most gene trees support the monophyly of Phrymaceae and each of its tribes. Most gene trees also support the tribe Mimuleae being sister to Phrymeae + Diplaceae + Leucocarpeae, with extensive gene tree discordance among the latter three. Despite the discordance, polyphyly of Mimulus s.l. is strongly supported, and no particular reticulation event among the Phrymaceae tribes is well supported. Reticulation likely occurred among Erythranthe bicolor and close relatives. No ancient WGD event was detected in Phrymaceae. Instead, small-scale duplications are among potential drivers of macroevolutionary diversification of Phrymaceae. Conclusions: We show that analysis of reticulate evolution is sensitive to taxon sampling and methods used. We also demonstrate that genome-scale data do not always fully "resolve" phylogenetic relationships. They present rich opportunities to investigate reticulate evolution, and gene and genome evolution involved in lineage diversification and adaptation.


2021 ◽  
Author(s):  
Anna Cho ◽  
Denis V. Tikhonenkov ◽  
Elisabeth Hehenberger ◽  
Anna Karnkowska ◽  
Patrick J. Keeling

Stramenopiles are a diverse but relatively well-studied eukaryotic supergroup with considerable genomic information available (Sibbald and Archibald, 2017). Nevertheless, the relationships between major stramenopile subgroups remain unresolved, in part due to a lack of data from small nanoflagellates that make up a lot of the genetic diversity of the group. This is most obvious in Bigyromonadea, which is one of four major stramenopile subgroups but represented by a single transcriptome. To examine the diversity of Bigyromonadea and how the lack of data affects the tree, we generated transcriptomes from seven novel bigyromonada species described in this study: Develocauda condao, Develocanicus komovi, Develocanicus vyazemskyi, Cubaremonas variflagellatum, Pirsonia chemainus, Feodosia pseudopoda, and Koktebelia satura. Both maximum likelihood and Bayesian phylogenomic trees based on a 247 gene-matrix recovered a monophyletic Bigyromonadea that includes two diverse subgroups, Developea and Pirsoniales, that were not previously related based on single gene trees. Maximum likelihood analyses show Bigyromonadea related to oomycetes, whereas Bayesian analyses and topology testing were inconclusive. We observed similarities between the novel bigyromonad species and motile zoospores of oomycetes in morphology and the ability to self-aggregate. Rare formation of pseudopods and fused cells were also observed, traits that are also found in members of labyrinthulomycetes, another osmotrophic stramenopiles. Furthermore, we report the first case of eukaryovory in the flagellated stages of Pirsoniales. These analyses reveal new diversity of Bigyromonadea, and altogether suggest their monophyly with oomycetes, collectively known as Pseudofungi, is the most likely topology of the stramenopile tree.


Sign in / Sign up

Export Citation Format

Share Document