scholarly journals Semi-rigidity of horocycle flows over compact surfaces of variable negative curvature

1987 ◽  
Vol 7 (1) ◽  
pp. 49-72 ◽  
Author(s):  
J. Feldman ◽  
D. Ornstein

AbstractLet g be the geodesic flow on the unit tangent bundle of a C3 compact surface of negative curvature. Let μ be the g-invariant measure of maximal entropy. Let h be a uniformly parametrized flow along the horocycle foliation, i.e., such a flow exists, leaves μ invariant, and is unique up to constant scaling of the parameter (Margulis). We show that any measure-theoretic conjugacy: (h, μ) → (h′, μ′) is a.e. of the form θ, where θ is a homeomorphic conjugacy: g → g′. Furthermore, any homeomorphic conjugacy g → g′; must be a C1 diffeomorphism.

2021 ◽  
pp. 1-13
Author(s):  
ADAM ABRAMS ◽  
SVETLANA KATOK ◽  
ILIE UGARCOVICI

Abstract Given a closed, orientable, compact surface S of constant negative curvature and genus $g \geq 2$ , we study the measure-theoretic entropy of the Bowen–Series boundary map with respect to its smooth invariant measure. We obtain an explicit formula for the entropy that only depends on the perimeter of the $(8g-4)$ -sided fundamental polygon of the surface S and its genus. Using this, we analyze how the entropy changes in the Teichmüller space of S and prove the following flexibility result: the measure-theoretic entropy takes all values between 0 and a maximum that is achieved on the surface that admits a regular $(8g-4)$ -sided fundamental polygon. We also compare the measure-theoretic entropy to the topological entropy of these maps and show that the smooth invariant measure is not a measure of maximal entropy.


1993 ◽  
Vol 13 (2) ◽  
pp. 335-347 ◽  
Author(s):  
Héctor Sánchez-Morgado

AbstractFried has related closed orbits of the geodesic flow of a surface S of constant negative curvature to the R-torsion for a unitary representation of the fundamental group of the unit tangent bundle T1S. In this paper we extend those results to transitive Anosov flows and 2-dimensional attractors on 3-manifolds.


1991 ◽  
Vol 11 (4) ◽  
pp. 653-686 ◽  
Author(s):  
Renato Feres

AbstractWe improve and extend a result due to M. Kanai about rigidity of geodesic flows on closed Riemannian manifolds of negative curvature whose stable or unstable horospheric foliation is smooth. More precisely, the main results proved here are: (1) Let M be a closed C∞ Riemannian manifold of negative sectional curvature. Assume the stable or unstable foliation of the geodesic flow φt: V → V on the unit tangent bundle V of M is C∞. Assume, moreover, that either (a) the sectional curvature of M satisfies −4 < K ≤ −1 or (b) the dimension of M is odd. Then the geodesic flow of M is C∞-isomorphic (i.e., conjugate under a C∞ diffeomorphism between the unit tangent bundles) to the geodesic flow on a closed Riemannian manifold of constant negative curvature. (2) For M as above, assume instead of (a) or (b) that dim M ≡ 2(mod 4). Then either the above conclusion holds or φ1, is C∞-isomorphic to the flow , on the quotient Γ\, where Γ is a subgroup of a real Lie group ⊂ Diffeo () with Lie algebra is the geodesic flow on the unit tangent bundle of the complex hyperbolic space ℂHm, m = ½ dim M.


1982 ◽  
Vol 2 (3-4) ◽  
pp. 513-524 ◽  
Author(s):  
P. Sarnak

AbstractLet M be a compact Riemannian manifold of (variable) negative curvature. Let h be the topological entropy and hμ the measure entropy for the geodesic flow on the unit tangent bundle to M. Estimates for h and hμ in terms of the ‘geometry’ of M are derived. Connections with and applications to other geometric questions are discussed.


1989 ◽  
Vol 9 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Ursula Hamenstädt

AbstractThe Bowen-Margulis measure on the unit tangent bundle of the universal covering of a compact manifold of negative curvature is determined by its restriction to the leaves of the strong unstable foliation. We describe this restriction to any strong unstable manifold W as a spherical measure with respect to a natural distance on W.


1992 ◽  
Vol 12 (2) ◽  
pp. 227-232
Author(s):  
Leon W. Green

AbstractLet X, H+, H− be vector fields tangent, respectively, to an Anosov flow and its expanding and contracting foliations in a compact three-dimensional manifold, with γ, α+, α− one forms dual to them. If α+([H+, H−]) = α−([H+, H−]) and γ([H+, H−]) = α−([X, H−]) − α+([X, H+]), then the manifold has the structure of the unit tangent bundle of a Riemannian orbifold with geodesic flow field X.


2016 ◽  
Vol 38 (3) ◽  
pp. 940-960
Author(s):  
PIERRE DEHORNOY ◽  
TALI PINSKY

We construct a template with two ribbons that describes the topology of all periodic orbits of the geodesic flow on the unit tangent bundle to any sphere with three cone points with hyperbolic metric. The construction relies on the existence of a particular coding with two letters for the geodesics on these orbifolds.


1989 ◽  
Vol 9 (3) ◽  
pp. 433-453 ◽  
Author(s):  
Y. Guivarc'h

AbstractWe study the ergodic properties of a class of dynamical systems with infinite invariant measure. This class contains skew-products of Anosov systems with ℝd. The results are applied to theKproperty of skew-products and also to the ergodicity of the geodesic flow on abelian coverings of compact manifolds with constant negative curvature.


1994 ◽  
Vol 14 (3) ◽  
pp. 493-514
Author(s):  
Ursula Hamenstädt

AbstractIt is shown that three different notions of regularity for the stable foliation on the unit tangent bundle of a compact manifold of negative curvature are equivalent. Moreover if is a time-preserving conjugacy of geodesic flows of such manifolds M, N then the Lyapunov exponents at corresponding periodic points of the flows coincide. In particular Δ also preserves the Lebesgue measure class.


Sign in / Sign up

Export Citation Format

Share Document