A method for proving that monotone twist maps have no invariant circles

1991 ◽  
Vol 11 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Irwin Jungreis

AbstractWe present an existence theorem for certain kinds of orbits of a monotone twist map and use it to obtain a criterion for proving that there are no invariant circles with a certain range of rotation numbers. We have used this criterion to prove (computer assisted) that the standard map has no invariant circles for several parameter values includingk= 0.9718.

1988 ◽  
Vol 8 (2) ◽  
pp. 241-310 ◽  
Author(s):  
P. Le Calvez

AbstractWe study dissipative twist maps of the annulus, following the ideas of G. D. Birkhoff explained in an article of 1932.In the first part, we give complete and rigorous proofs of the results of this article. We define the Birkhoff attractor of a dissipative twist map which has an attracting bounded annulus, we give its main properties and we define its upper and lower rotation numbers.In the second part we give further results on these sets, thus we show that they often coincide with the closure of a hyperbolic periodic point and that they can contain an infinite number of sinks. We also show that the Birkhoff attractors don't depend on a continuous way on the maps.


2002 ◽  
Vol 74 (1) ◽  
pp. 25-31
Author(s):  
SALVADOR ADDAS-ZANATA

We prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's). These orbits have a non-zero "vertical rotation number'' (V.R.N.), in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 < b < a. And as a consequence of the previous results we get that a twist map of the torus with no R.I.C's has positive topological entropy, which is a very classical result. In the end of the paper we present some applications and examples, like the Standard map, such that our results apply.


1998 ◽  
Vol 18 (3) ◽  
pp. 725-730
Author(s):  
KARL FRIEDRICH SIBURG

According to a theorem of Moser, every monotone twist map $\varphi$ on the cylinder ${\Bbb S}^1\times {\Bbb R}$, which is integrable outside a compact set, is the time-1-map $\varphi_H^1$ of a fibrewise convex Hamiltonian $H$. In this paper we prove that if this particular flow $\varphi_H^t$ is also integrable outside a compact set, then $\varphi$ has to be integrable on the whole cylinder (and vice versa, of course). From this dynamical point of view, integrable twist maps appear to be quite rigid.As is shown in the appendix, an analogous rigidity result becomes trivial in higher dimensions.


1986 ◽  
Vol 6 (2) ◽  
pp. 205-239 ◽  
Author(s):  
Kevin Hockett ◽  
Philip Holmes

AbstractWe investigate the implications of transverse homoclinic orbits to fixed points in dissipative diffeomorphisms of the annulus. We first recover a result due to Aronsonet al.[3]: that certain such ‘rotary’ orbits imply the existence of an interval of rotation numbers in the rotation set of the diffeomorphism. Our proof differs from theirs in that we use embeddings of the Smale [61] horseshoe construction, rather than shadowing and pseudo orbits. The symbolic dynamics associated with the non-wandering Cantor set of the horseshoe is then used to prove the existence of uncountably many invariant Cantor sets (Cantori) of each irrational rotation number in the interval, some of which are shown to be ‘dissipative’ analogues of the order preserving Aubry-Mather Cantor sets found by variational methods in area preserving twist maps. We then apply our results to the Josephson junction equation, checking the necessary hypotheses via Melnikov's method, and give a partial characterization of the attracting set of the Poincaré map for this equation. This provides a concrete example of a ‘Birkhoff attractor’ [10].


2014 ◽  
Vol 35 (4) ◽  
pp. 1263-1288 ◽  
Author(s):  
BLAŽ MRAMOR ◽  
BOB RINK

AbstractWe study the Peierls barrier$P_{\omega }(\xi )$for a broad class of monotone variational problems. These problems arise naturally in solid state physics and from Hamiltonian twist maps. We start by deriving an estimate for the difference$\vert P_{\omega }(\xi ) - P_{q/p}(\xi ) \vert $of the Peierls barriers of rotation numbers$\omega \in {{\mathbb{R}}}$and$q/p\in {\mathbb{Q}}$. A similar estimate was obtained by Mather [Modulus of continuity for Peierls’s barrier.Proc. NATO Advanced Research Workshop on Periodic Solutions of Hamiltonian Systems and Related Topics (Il Ciocco, Italy, 13–18 October 1986) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 209).Eds. P. H. Rabinowitz, A. Ambrosetti and I. Eckeland. D. Reidel, Dordrecht, 1987, pp. 177–202] in the context of twist maps, but our proof is different and applies more generally. It follows from the estimate that$\omega \mapsto P_{\omega }(\xi )$is continuous at irrational points. Moreover, we show that the Peierls barrier depends continuously on parameters and hence that the property that a monotone variational problem admits a lamination of minimizers of rotation number$\omega \in {{\mathbb{R}}}\delimiter "026E30F {\mathbb{Q}}$is open in the$C^1$-topology.


Sign in / Sign up

Export Citation Format

Share Document