The structure of automorphisms of real suspension flows

1991 ◽  
Vol 11 (2) ◽  
pp. 349-364 ◽  
Author(s):  
Harvey B. Keynes ◽  
Nelson G. Markley ◽  
Michael Sears

AbstractThis paper is motivated by the connections between automorphisms of real suspension flows and ℝ2 suspension actions. Automorphisms which naturally lead to ℤ2-cocyles are examined from the viewpoint of covering theory in terms of an associated cylinder flow. A natural type of automorphisms (called simple) is analyzed via ergodic methods. It is shown that all automorphisms of suspensions built over minimal rotations on tori satisfy this condition. A more general approach using eigenfunctions extends this result to minimal affines, Furstenberg-type distal flows, certain nilmanifolds and a class of non-distal flows on the 2-torus.

1992 ◽  
Vol 68 (05) ◽  
pp. 589-594 ◽  
Author(s):  
Alon Margalit ◽  
Avinoam A Livne

SummaryHuman platelets exposed to hypotonicity undergo regulatory volume decrease (RVD), controlled by a potent, yet labile, lipoxygenase product (LP). LP is synthesized and excreted during RVD affecting selectively K+ permeability. LP is assayed by its capacity to reconstitute RVD when lipoxygenase is blocked. Centrifugation for preparing washed platelets (1,550 × g, 10 min) is sufficient to express LP activity, with declining potency in repeated centrifugations, indicating that it is not readily replenish-able. When platelet suspension flows in a vinyl tubing (1 mm i.d.), at physiological velocity, controlled at 90–254 cm/s, LP formation increases as a function of velocity but declines as result of increasing the tubing length. Stirring the platelets in an aggregometer cuvette for 30 s, yields no LP unless the stirring is intermittent. No associated platelet lysis or aggregation are observed following the mechanical stress applications. These results demonstrate that although mechanical stresses result in LP production, the mode of its application plays a major role. These results may indicate that LP is synthesized under pathological conditions and could be of relevance to platelets behavior related to arterial stenosis.


2016 ◽  
Author(s):  
Wuyi Wang ◽  
◽  
Paul Johnson ◽  
Ulrika D’Haenens-Johansson ◽  
Lorne Loudin
Keyword(s):  

2021 ◽  
Vol 62 (6) ◽  
Author(s):  
Michael Wörner ◽  
Gregor Rottenkolber

AbstractIn an experimental procedure, a voltage rise anemometry is developed as a measurement technique for turbulent flows. Initially, fundamental investigations on a specific wind tunnel were performed for basic understanding and calibration purpose. Thus, a mathematical correlation is derived for calculating flow from measured secondary voltage of an ignition system under different thermodynamic conditions. Subsequently, the derived method was applied on a spark-ignited engine to measure in-cylinder flow. Therefore, no changes on combustion chamber were necessary avoiding any interferences of the examined flow field. Comparing four different engine configurations, a study of mean flow and turbulence was performed. Moreover, the results show a clear correlation between measured turbulence and analysed combustion parameters. Graphic abstract


2021 ◽  
Vol 31 (3) ◽  
pp. 033129
Author(s):  
Irina Bashkirtseva ◽  
Lev Ryashko
Keyword(s):  

2021 ◽  
Vol 183 (2) ◽  
Author(s):  
Henk Bruin

AbstractWe show that certain billiard flows on planar billiard tables with horns can be modeled as suspension flows over Young towers (Ann. Math. 147:585–650, 1998) with exponential tails. This implies exponential decay of correlations for the billiard map. Because the height function of the suspension flow itself is polynomial when the horns are Torricelli-like trumpets, one can derive Limit Laws for the billiard flow, including Stable Limits if the parameter of the Torricelli trumpet is chosen in (1, 2).


Author(s):  
D. Furey ◽  
P. Atsavapranee ◽  
K. Cipolla

Stereo Particle Image velocimetry data was collected over high aspect ratio flexible cylinders (L/a = 1.5 to 3 × 105) to evaluate the axial development of the turbulent boundary layer where the boundary layer thickness becomes significantly larger than the cylinder diameter (δ/a>>1). The flexible cylinders are approximately neutrally buoyant and have an initial length of 152 m and radii of 0.45 mm and 1.25 mm. The cylinders were towed at speeds ranging from 3.8 to 15.4 m/sec in the David Taylor Model Basin. The analysis of the SPIV data required a several step procedure to evaluate the cylinder boundary flow. First, the characterization of the flow field from the towing strut is required. This evaluation provides the residual mean velocities and turbulence levels caused by the towing hardware at each speed and axial location. These values, called tare values, are necessary for comparing to the cylinder flow results. Second, the cylinder flow fields are averaged together and the averaged tare fields are subtracted out to remove strut-induced ambient flow effects. Prior to averaging, the cylinder flow fields are shifted to collocate the cylinder within the field. Since the boundary layer develops slowly, all planes of data occurring within each 10 meter increment of the cylinder length are averaged together to produce the mean boundary layer flow. Corresponding fields from multiple runs executed using the same experimental parameters are also averaged. This flow is analyzed to evaluate the level of axisymmetry in the data and determine if small changes in cylinder angle affect the mean flow development. With axisymmetry verified, the boundary flow is further averaged azimuthally around the cylinder to produce mean boundary layer profiles. Finally, the fluctuating velocity levels are evaluated for the flow with the cylinder and compared to the fluctuating velocity levels in the tare data. This paper will first discuss the data analysis techniques for the tare data and the averaging methods implemented. Second, the data analysis considerations will be presented for the cylinder data and the averaging and cylinder tracking techniques. These results are used to extract relevant boundary layer parameters including δ, δ* and θ. Combining these results with wall shear and momentum thickness values extracted from averaged cylinder drag data, the boundary layer can be well characterized.


2014 ◽  
Vol 555 ◽  
pp. 012065 ◽  
Author(s):  
H Aa Madsen ◽  
U S Paulsen ◽  
L Vitae
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document