regulatory volume decrease
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 20)

H-INDEX

54
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Maria Stefania Brignone ◽  
Angela Lanciotti ◽  
Antonio Michelucci ◽  
Cinzia Mallozzi ◽  
Serena Camerini ◽  
...  

Abstract MLC1 is a membrane protein highly expressed by brain perivascular astrocytes. Mutations in the MLC1 gene account for megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling, causing cognitive and motor dysfunctions. It has been demonstrated that MLC1 mutations affect the swelling-activated Cl - currents (I Cl,swell ) mediated by volume-regulated anion channel (VRAC) and the consequent regulatory volume decrease (RVD) and lead to abnormal activation of intracellular signaling pathways linked to inflammation/osmotic stress. Despite this knowledge, the MLC1 physiological role and MLC molecular pathogenesis are still elusive. Following the observations that Ca 2+ regulates all the MLC1-modulated processes and that intracellular Ca 2+ homeostasis is altered in MLC1-defective cells, we applied a multidisciplinary approach including biochemistry, molecular biology, video imaging, electrophysiology and proteomic techniques on cultured astrocytes to uncover new Ca 2+ -dependent signaling pathways controlling MLC1 function. Here, we revealed that MLC1 binds the Ca 2+ effector proteins calmodulin (CaM) and Ca 2+ /CaM-dependent protein kinase II (CaMKII) and, as result, changes its assembly, localization and functional properties in response to Ca 2+ changes. Noteworthy, CaM binding to the COOH terminal promotes MLC1 trafficking to the plasma membrane, while CaMKII phosphorylation of the NH 2 -terminal potentiates MLC1 activation of I Cl,swell . Overall, these results revealed that MLC1 is a Ca 2+ -regulated protein linking VRAC function and, possibly, volume regulation to Ca 2+ signaling in astrocytes. These findings open new avenues of investigations aimed at clarifying the abnormal molecular pathways underlying MLC and other diseases characterized by astrocyte swelling and brain edema.


Author(s):  
Valentina E. Yurinskaya ◽  
Alexey A. Vereninov

Cation-coupled chloride cotransporters play a key role in generating the Cl– electrochemical gradient on the cell membrane, which is important for regulation of many cellular processes. However, a quantitative analysis of the interplay between numerous membrane transporters and channels in maintaining cell ionic homeostasis is still undeveloped. Here, we demonstrate a recently developed approach on how to predict cell ionic homeostasis dynamics when stopping the sodium pump in human lymphoid cells U937. The results demonstrate the reliability of the approach and provide the first quantitative description of unidirectional monovalent ion fluxes through the plasma membrane of an animal cell, considering all the main types of cation-coupled chloride cotransporters operating in a system with the sodium pump and electroconductive K+, Na+, and Cl– channels. The same approach was used to study ionic and water balance changes associated with regulatory volume decrease (RVD), a well-known cellular response underlying the adaptation of animal cells to a hypoosmolar environment. A computational analysis of cell as an electrochemical system demonstrates that RVD may happen without any changes in the properties of membrane transporters and channels due to time-dependent changes in electrochemical ion gradients. The proposed approach is applicable when studying truly active regulatory processes mediated by the intracellular signaling network. The developed software can be useful for calculation of the balance of the unidirectional fluxes of monovalent ions across the cell membrane of various cells under various conditions.


2021 ◽  
Vol 55 (S1) ◽  
pp. 185-195
Author(s):  
Valérie Maxime ◽  

BACKGROUND/AIMS: The osmolytes involved in the volume regulation of hyposmotically-swollen fish cells are well identified. However, if a coordination and adjustments of their fluxes are obvious, few studies have clearly illustrated these aspects. METHODS: Trout red blood cells volume variations were estimated from water contents obtained by a gravimetric method. Intracellular K+ and Na+ contents, and Cl- content of haemolysed cells were determined by photometry and colorimetry, respectively. The taurine contribution to cell volume regulation was calculated from the net changes of water, K+, Cl- and Na+ contents. The intracellular pH was calculated from the chloride distribution across the cells membranes according to the Donnan equilibrium. RESULTS: Cells responses to a rapid change (from 296 to 176 mOsm.kg-1)
of the saline osmolality were examined in three conditions designed to not impact (Hypo. I)
or to reduce the K+ (Hypo. II) and Cl- (Hypo. III) contributions to the volume regulation. Hypo. I condition caused an immediate increase in water content, followed by a 90 min. full regulation, concomitant with gradual lowering of K+ and Cl- contents and a surprising increase in Na+ content. Hypo. II and III conditions showed a partial and complete volume regulation, respectively. This was made possible by an increase in the taurine involvement. These experiments allowed to confirm that K+ and Cl- were released via KCl cotransport and by separate channels. The comparison of Hypo. I and III conditions led to the observation that the partially amiloride-sensitive Na+ influx is proportional to the taurine efflux; the latter being sustained mainly by a Na+/taurine cotransport. The Hypo. II condition was suitable for the (Na+/K+)ATPase activity inhibition. This effect could explain the observed lack of Na+ uptake, the consecutive depletion of intracellular taurine stock and the incomplete volume regulation. Finally, the results support the importance of taurine in pH control under Hypo. I (physiologic) condition. The alkalosis observed in Hypo. II and III conditions were the consequences of changes in the salines compositions, not of physiologic adjustments. CONCLUSION: The regulatory volume decrease process of trout RBCs is complex and adjustable through coordinated osmolytes movements. The obliged decrease in K+ and/or Cl- contributions stimulates taurine and Na+ pathways. This study highlights the importance of taurine as a compensatory variable in cell volume regulation and explains for the first time the significance of the Na+ uptake during this process


2021 ◽  
Vol 22 (15) ◽  
pp. 7967
Author(s):  
Nadezhda Barvitenko ◽  
Muhammad Aslam ◽  
Alfons Lawen ◽  
Carlota Saldanha ◽  
Elisaveta Skverchinskaya ◽  
...  

Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.


2021 ◽  
Author(s):  
Alexey A Vereninov ◽  
Valentina Yurinskaya

Cation-coupled chloride cotransporters play a key role in generating the Cl− electrochemical gradient on the cell membrane which is important for regulation of many cellular processes. However, the cooperation of transporters and channels of the plasma membrane in holding the ionic homeostasis of the whole cell remains poorly characterized because of the lack of a suitable tool for its computation. Our software successfully predicted in real-time changes in the ion homeostasis of U937 cells after stopping the Na/K pump, but so far considered the model with only NC cotransporter. Here the model with all main types of cotransporters is used in computation of the rearrangements of ionic homeostasis due to stopping the pump and associated with the regulatory volume decrease (RVD) of cells swollen in hypoosmolar medium. The parameters obtained for the real U937 cells are used. Successful prediction of changes in ion homeostasis in real-time after stopping the pump using the model with all major cotransporters indicates that the model is reliable. Using this model for analysis RVD showed that there is a "physical" RVD, associated with the time-dependent changes in electrochemical ion gradients, but not with alteration of channels and transporters of the plasma membrane that should be considered in studies of truly active regulatory processes mediated by the intracellular signaling network. The developed software can be useful for calculation of the balance of the partial unidirectional fluxes of monovalent ions across the cell membrane of various cells under various conditions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tomohiro Numata ◽  
Kaori Sato-Numata ◽  
Meredith C. Hermosura ◽  
Yasuo Mori ◽  
Yasunobu Okada

AbstractAnimal cells can regulate their volume after swelling by the regulatory volume decrease (RVD) mechanism. In epithelial cells, RVD is attained through KCl release mediated via volume-sensitive outwardly rectifying Cl− channels (VSOR) and Ca2+-activated K+ channels. Swelling-induced activation of TRPM7 cation channels leads to Ca2+ influx, thereby stimulating the K+ channels. Here, we examined whether TRPM7 plays any role in VSOR activation. When TRPM7 was knocked down in human HeLa cells or knocked out in chicken DT40 cells, not only TRPM7 activity and RVD efficacy but also VSOR activity were suppressed. Heterologous expression of TRPM7 in TRPM7-deficient DT40 cells rescued both VSOR activity and RVD, accompanied by an increase in the expression of LRRC8A, a core molecule of VSOR. TRPM7 exerts the facilitating action on VSOR activity first by enhancing molecular expression of LRRC8A mRNA through the mediation of steady-state Ca2+ influx and second by stabilizing the plasmalemmal expression of LRRC8A protein through the interaction between LRRC8A and the C-terminal domain of TRPM7. Therefore, TRPM7 functions as an essential regulator of VSOR activity and LRRC8A expression.


2021 ◽  
Vol 55 (S1) ◽  
pp. 119-134

BACKGROUND/AIMS: Arginine vasopressin (AVP) neurons play an important role for sensing a change in the plasma osmolarity and thereby responding with regulated AVP secretion in order to maintain the body fluid homeostasis. The osmo-sensing processes in magnocellular neurosecretory cells (MNCs) including AVP and oxytocin (OXT) neurons of the hypothalamus were reported to be coupled to sustained osmotic shrinkage or swelling without exhibiting discernible cell volume regulation. Since increasing evidence has shown some important differences in properties between AVP and OXT neurons, osmotic volume responses are to be reexamined with distinguishing these cell types from each other. We previously reported that AVP neurons identified by transgenic expression of enhanced green fluorescence protein (eGFP) possess the ability of regulatory volume decrease (RVD) after hypoosmotic cell swelling. Thus, in the present study, we examined the ability of regulatory volume increase (RVI) after hyperosmotic cell shrinkage in AVP neurons. METHODS: Here, we used eGFP-identified AVP neurons acutely dissociated from AVP-eGFP transgenic rats. We performed single-cell size measurements, cytosolic RT-PCR analysis, AVP secretion measurements, and patch-clamp studies. RESULTS: The AVP neurons were found to respond to a hyperosmotic challenge with physiological cell shrinkage caused by massive secretion of AVP, called a secretory volume decrease (SVD), superimposed onto physical osmotic cell shrinkage, and also to exhibit the ability of RVI coping with osmotic and secretory cell shrinkage. Furthermore, our pharmacological and molecular examinations indicated that AVP secretion and its associated SVD event are triggered by activation of T-type Ca2+ channels, and the RVI event is attained by parallel operation of Na+/H+ exchanger and Cl-/HCO3- anion exchanger. CONCLUSION: Thus, it is concluded that AVP neurons respond to hyperosmotic stimulation with the regulatory volume increase and the secretory volume increase by activating ion transporters and Ca2+ channels, respectively.


2021 ◽  
Vol 55 (S1) ◽  
pp. 106-118

More than three decades after their first biophysical description, Volume Regulated Anion Channels (VRACs) still remain challenging to understand. Initially, VRACs were identified as the main pathway for the cell to extrude Cl- ions during the regulatory volume decrease (RVD) mechanism contributing in fine to the recovery of normal cell volume. For years, scientists have tried unsuccessfully to find their molecular identity, leading to controversy within the field that only ended in 2014 when two independent groups demonstrated that VRACs were formed by heteromers of LRRC8 proteins. This breakthrough gave a second breath to the research field and was followed by many publications regarding LRRC8/VRACs structure/ function, physiological roles and 3D structures. Nevertheless, far from simplifying the field, these discoveries have instead exponentially increased its complexity. Indeed, the channel's biophysical properties seem to be dependent on the LRRC8 subunits composition with each heteromer showing different ion/molecule permeabilities and regulatory mechanisms. One clear example of this complexity is the intricate relationship between LRRC8/VRACs and the redox system. On one hand, VRACs appear to be directly regulated by oxidation or reduction depending on their subunit composition. On the other hand, VRACs can also impact the redox balance within the cells, through their permeability to reduced glutathione or through other as yet uncharacterized pathways. Unravelling this issue is particularly crucial as LRRC8/VRACs play an important role in a wide variety of physiological processes involving oxidative stress signaling. In this regard, we have tried to systematically identify in the literature both preand post-LRRC8 discovery as well as the interplay between VRACs and the redox system to provide new insights into this complex relationship.


2021 ◽  
Vol 55 (S1) ◽  
pp. 57-70

In order to cope with external stressors such as changes in humidity and temperature or irritating substances, the epidermis as the outermost skin layer forms a continuously renewing and ideally intact protective barrier. Under certain circumstances, this barrier can be impaired and epidermal cells have to counteract cell swelling or shrinkage induced by osmotic stress via regulatory volume decrease (RVD) or increase (RVI). Here, we will review the current knowledge regarding the molecular machinery underlying RVD and RVI in the epidermis. Furthermore, we will discuss the current understanding how cell volume changes and its regulators are associated with epidermal renewal and barrier formation.


Sign in / Sign up

Export Citation Format

Share Document