Computation and Validation of In-Cylinder Flow Field, Swirl and Flow Coefficients for a Naturally Aspirated Single Cylinder Diesel Engine

2016 ◽  
Author(s):  
Siva Krishna Reddy Dwarshala ◽  
Suryanarayana Vandana ◽  
Ghodke Pundlik Rambhaji
2003 ◽  
Author(s):  
Wook Choi ◽  
Byung-Chul Choi ◽  
Hyung-Koo Park ◽  
Kyung-Jei Joo ◽  
Je-Hyung Lee

2013 ◽  
Vol 860-863 ◽  
pp. 1729-1732
Author(s):  
Guo Cheng Li ◽  
Ping Sun ◽  
Peng Hu

Based on the entity model of the type 4B26 diesel engine, calculated by CFD FIRE and combined with the software BOOST for the initial boundary conditions, the influence of combustion chamber structural parameters, such as boss height, surface-volume ratio and diameter-depth ratio of combustion chamber, on in-cylinder flow field of diesel engine was investigated. The results show that the influence of the boss height on flow field in the cylinder and the transient swirl ratio is obvious, and increasing the boss height is beneficial to urge the formation of mixture rapidly. Reducing the surface-volume ratio is beneficial for improving the maximum transient swirl ratio, and the air strength maintains well also, but has little influence to the retentivity of the swirl intensity. Meanwhile, reducing the diameter-depth ratio does not only improves the air flow movement strengthen in the combustion chamber, but also enhances the maximum transient swirl ratio, and the retentivity of swirl flow movement is satisfying.


2007 ◽  
Author(s):  
Ossi Kaario ◽  
Eric Lendormy ◽  
Teemu Sarjovaara ◽  
Martti Larmi ◽  
Pekka Rantanen

Author(s):  
M. A. Adzmi ◽  
A. Abdullah ◽  
Z. Abdullah ◽  
A. G. Mrwan

Evaluation of combustion characteristic, engine performances and exhaust emissions of nanoparticles blended in palm oil methyl ester (POME) was conducted in this experiment using a single-cylinder diesel engine. Nanoparticles used was aluminium oxide (Al2O3) and silicon dioxide (SiO2) with a portion of 50 ppm and 100 ppm. SiO2 and Al2O3 were blended in POME and labelled as PS50, PS100 and PA50, PA100, respectively. The data results for PS and PA fuel were compared to POME test fuel. Single cylinder diesel engine YANMAR TF120M attached with DEWESoft data acquisition module (DAQ) model SIRIUSi-HS was used in this experiment. Various engine loads of zero, 7 N.m, 14 Nm, 21 N.m and 28 N.m at a constant engine speed of 1800 rpm were applied during engine testing. Results for each fuel were obtained by calculating the average three times repetition of engine testing. Findings show that the highest maximum pressure of nanoparticles fuel increase by 16.3% compared to POME test fuel. Other than that, the engine peak torque and engine power show a significant increase by 43% and 44%, respectively, recorded during the PS50 fuel test. Meanwhile, emissions of nanoparticles fuel show a large decrease by 10% of oxide of nitrogen (NOx), 6.3% reduction of carbon dioxide (CO2) and a slight decrease of 0.02% on carbon monoxide (CO). Addition of nanoparticles in biodiesel show positive improvements when used in diesel engines and further details were discussed.  


2021 ◽  
Vol 11 (15) ◽  
pp. 6749
Author(s):  
Zhifeng Xie ◽  
Ao Wang ◽  
Zhuoran Liu

The cooling system is an important subsystem of an internal combustion engine, which plays a vital role in the engine’s dynamical characteristic, the fuel economy, and emission output performance at each speed and load. This paper proposes an economical and precise model for an electric cooling system, including the modeling of engine heat rejection, water jacket temperature, and other parts of the cooling system. This model ensures that the engine operates precisely at the designated temperature and the total power consumption of the cooling system takes the minimum value at some power proportion of fan and pump. Speed maps for the cooling fan and pump at different speeds and loads of engine are predicted, which can be stored in the electronic control unit (ECU). This model was validated on a single-cylinder diesel engine, called the DK32. Furthermore, it was used to tune the temperature of the water jacket precisely. The results show that in the common use case, the electric cooling system can save the power of 255 W in contrast with the mechanical cooling system, which is about 1.9% of the engine’s power output. In addition, the validation results of the DK32 engine meet the non-road mobile machinery China-IV emission standards.


2021 ◽  
Vol 1068 (1) ◽  
pp. 012016
Author(s):  
Hazim Sharudin ◽  
N.A. Rahim ◽  
N.I. Ismail ◽  
Sharzali Che Mat ◽  
Nik Rosli Abdullah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document