scholarly journals The Milky Way Disk Warp

1989 ◽  
Vol 120 ◽  
pp. 537-537 ◽  
Author(s):  
E. Florido ◽  
E. Battaner ◽  
E. Alfaro ◽  
M.L. Sanchez-Saavedra

A warped disk in our own galaxy is evident by means of HI, HII, γ-rays and dust observations, but unexistent when star distributions are considered, specially those of late type stars. This fact is in disagreement with the theories which assume a gravitational origin of warps, for instance a tidal interaction with the Magellanic Clouds. We tried to find the z-distribution of open clusters of different ages, for which a warp distribution was neither found nor rejected. Assuming an intergalactic magnetic field origin of the warp, we obtain a direction of the field in the Milky Way neighborhood given by (b,1) = (45°, 74°).

1991 ◽  
Vol 148 ◽  
pp. 337-338
Author(s):  
I. A. Bond

An experimental survey of ultra-high-energy γ-ray sources in the Magellanic Clouds is described. Results of the survey may be used to study the intergalactic magnetic field.


2008 ◽  
Vol 4 (S256) ◽  
pp. 349-354
Author(s):  
Christophe Martayan ◽  
Dietrich Baade ◽  
Juan Fabregat

AbstractAt low metallicity, B-type stars show lower loss of mass and, therefore, angular momentum so that it is expected that there are more Be stars in the Magellanic Clouds than in the Milky Way. However, till now, searches for Be stars were only performed in a very small number of open clusters in the Magellanic Clouds. Using the ESO/WFI in its slitless spectroscopic mode, we performed a Hα survey of the Large and Small Magellanic Cloud. Eight million low-resolution spectra centered on Hα were obtained. For their automatic analysis, we developed the ALBUM code. Here, we present the observations, the method to exploit the data and first results for 84 open clusters in the SMC. In particular, cross-correlating our catalogs with OGLE positional and photometric data, we classified more than 4000 stars and were able to find the B and Be stars in them. We show the evolution of the rates of Be stars as functions of area density, metallicity, spectral type, and age.


In a previous paper the absorption of γ-rays in the K-X-ray levels of the atom in which they are emitted was calculated according to the Quantum Mechanics, supposing the γ-rays to be emitted from a doublet of moment f ( t ) at the centre of the atom. The non-relativity wave equation derived from the relativity wave equation for an electron of charge — ε moving in an electro-magnetic field of vector potential K and scalar potential V is h 2 ∇ 2 ϕ + 2μ ( ih ∂/∂ t + εV + ih ε/μ c (K. grad)) ϕ = 0. (1) Suppose, however, that K involves the space co-ordinates. Then, (K. grad) ϕ ≠ (grad . K) ϕ , and the expression (K . grad) ϕ is not Hermitic. Equation (1) cannot therefore be the correct non-relativity wave equation for a single electron in an electron agnetic field, and we must substitute h 2 ∇ 2 ϕ + 2μ ( ih ∂/∂ t + εV) ϕ + ih ε/ c ((K. grad) ϕ + (grad. K) ϕ ) = 0. (2)


1983 ◽  
Vol 6 ◽  
pp. 109-117 ◽  
Author(s):  
R.D. Cannon

In this review I shall concentrate mainly on globular star clusters in our Galaxy since these are the objects for which most work has been done recently, both observationally and theoretically. However, I shall also discuss briefly the oldest open clusters and clusters in the Magellanic Clouds. Little can be said about more distant cluster systems, since the only observations available are of integrated colours or spectra and these seem to be rather unreliable indicators of age. It is perhaps worth pointing out that the title may be slightly misleading; the problem is not so much to determine the ages of clusters of known abundances, as to obtain the best simultaneous solution for both age and composition, since some of the most important abundances (notably helium and oxygen) are virtually unobservable in little-evolved low mass stars.


2011 ◽  
Vol 743 (1) ◽  
pp. 40 ◽  
Author(s):  
Michael T. Busha ◽  
Philip J. Marshall ◽  
Risa H. Wechsler ◽  
Anatoly Klypin ◽  
Joel Primack

2018 ◽  
Vol 618 ◽  
pp. A137 ◽  
Author(s):  
Ricardo Dorda ◽  
Ignacio Negueruela ◽  
Carlos González-Fernández ◽  
Amparo Marco

We present an atlas composed of more than 1500 spectra of late-type stars (spectral types from G to M) observed simultaneously in the optical and calcium triplet spectral ranges. These spectra were obtained as part of a survey to search for cool supergiants in the Magellanic Clouds and were taken over four epochs. We provide the spectral and luminosity classification for each spectrum (71% are supergiants, 13% are giants or luminous giants, 4% are carbon or S stars, and the remaining 12% are foreground stars of lesser luminosities). We also provide a detailed guide for the spectral classification of luminous late-type stars, the result of the extensive classification work done for the atlas. Although this guide is based on classical criteria, we have put them together and re-elaborated them for modern CCD-spectra as these criteria were scattered among many different works and mainly conceived for use with photographic plate spectra. The result is a systematic, well-tested process for identifying and classifying luminous late-type stars, illustrated with CCD spectra of standard stars and the classifications of our own catalogue.


2018 ◽  
Vol 615 ◽  
pp. A12 ◽  
Author(s):  
Steffi X. Yen ◽  
Sabine Reffert ◽  
Elena Schilbach ◽  
Siegfried Röser ◽  
Nina V. Kharchenko ◽  
...  

Context. Open clusters have long been used to gain insights into the structure, composition, and evolution of the Galaxy. With the large amount of stellar data available for many clusters in the Gaia era, new techniques must be developed for analyzing open clusters, as visual inspection of cluster color-magnitude diagrams is no longer feasible. An automatic tool will be required to analyze large samples of open clusters. Aims. We seek to develop an automatic isochrone-fitting procedure to consistently determine cluster membership and the fundamental cluster parameters. Methods. Our cluster characterization pipeline first determined cluster membership with precise astrometry, primarily from TGAS and HSOY. With initial cluster members established, isochrones were fitted, using a χ2 minimization, to the cluster photometry in order to determine cluster mean distances, ages, and reddening. Cluster membership was also refined based on the stellar photometry. We used multiband photometry, which includes ASCC-2.5 BV, 2MASS JHKs, and Gaia G band. Results. We present parameter estimates for all 24 clusters closer than 333 pc as determined by the Catalogue of Open Cluster Data and the Milky Way Star Clusters catalog. We find that our parameters are consistent to those in the Milky Way Star Clusters catalog. Conclusions. We demonstrate that it is feasible to develop an automated pipeline that determines cluster parameters and membership reliably. After additional modifications, our pipeline will be able to use Gaia DR2 as input, leading to better cluster memberships and more accurate cluster parameters for a much larger number of clusters.


2018 ◽  
Vol 869 (2) ◽  
pp. 139 ◽  
Author(s):  
G. Cordoni ◽  
A. P. Milone ◽  
A. F. Marino ◽  
M. Di Criscienzo ◽  
F. D’Antona ◽  
...  

2018 ◽  
Vol 618 ◽  
pp. A93 ◽  
Author(s):  
T. Cantat-Gaudin ◽  
C. Jordi ◽  
A. Vallenari ◽  
A. Bragaglia ◽  
L. Balaguer-Núñez ◽  
...  

Context. Open clusters are convenient probes of the structure and history of the Galactic disk. They are also fundamental to stellar evolution studies. The second Gaia data release contains precise astrometry at the submilliarcsecond level and homogeneous photometry at the mmag level, that can be used to characterise a large number of clusters over the entire sky. Aims. In this study we aim to establish a list of members and derive mean parameters, in particular distances, for as many clusters as possible, making use of Gaia data alone. Methods. We compiled a list of thousands of known or putative clusters from the literature. We then applied an unsupervised membership assignment code, UPMASK, to the Gaia DR2 data contained within the fields of those clusters. Results. We obtained a list of members and cluster parameters for 1229 clusters. As expected, the youngest clusters are seen to be tightly distributed near the Galactic plane and to trace the spiral arms of the Milky Way, while older objects are more uniformly distributed, deviate further from the plane, and tend to be located at larger Galactocentric distances. Thanks to the quality of Gaia DR2 astrometry, the fully homogeneous parameters derived in this study are the most precise to date. Furthermore, we report on the serendipitous discovery of 60 new open clusters in the fields analysed during this study.


Sign in / Sign up

Export Citation Format

Share Document