scholarly journals Thinning and Grounding-Line Retreat on Ross Ice Shelf, Antarctica

1988 ◽  
Vol 11 ◽  
pp. 165-172 ◽  
Author(s):  
R. H. Thomas ◽  
S. N. Stephenson ◽  
R. A. Bindschadler ◽  
S. Shabtaie ◽  
C. R. Bentley

Detailed measurements of surface topography, ice motion, snow accumulation, and ice thickness were made in January 1974 and again in December 1984, along an 8 km stake network extending from the ice sheet, across the grounding line, and on to floating ice shelf in the mouth of slow-moving Ice Stream C, which flows into the eastern side of Ross Ice Shelf, Antarctica. During the 11 years between surveys, the grounding line retreated by approximately 300 m. This was caused by net thinning of the ice shelf, which we believe to be a response to the comparatively recent, major decrease in ice discharge from Ice Stream C. Farther inland, snow accumulation is not balanced by ice discharge, and the ice stream is growing progressively thicker. There is evidence that the adjacent Ice Stream B has slowed significantly over the last decade, and this may be an early indication that this fast-moving ice stream is about to enter a period of stagnation similar to that of Ice Stream C. Indeed, these large ice streams flowing from West Antarctica into Ross Ice Shelf may oscillate between periods of relative stagnation and major activity. During active periods, large areas of ice shelf thicken and run aground on seabed to form extensive “ice plains” in the mouth of the ice stream. Ultimately, these become too large to be pushed seaward by the ice stream, which then slows down and enters a period of stagnation. During this period, the grounding line of the ice plain retreats, as we observe today in the mouth of Ice Stream C, because nearby ice shelf, no longer compressed by ice-stream motion, progressively thins. At the same time, water within the deformable till beneath the ice starts to freeze on to the base of the ice stream, and snow accumulation progressively increases the ice thickness. A new phase of activity would be initiated when the increasing gravity potential of the ice stream exceeds the total resistance of the shrinking ice plain and the thinning layer of deformable till at the bed. This could occur rapidly if the effects of the shrinking ice plain outweigh those of the thinning (and therefore stiffening) till. Otherwise, the till layer would finally become completely frozen, and the ice stream would have to thicken sufficiently to initiate significant heating by internal deformation, followed by basal melting and finally saturation of an adequate thickness of till; this could take some thousands of years.

1988 ◽  
Vol 11 ◽  
pp. 165-172 ◽  
Author(s):  
R. H. Thomas ◽  
S. N. Stephenson ◽  
R. A. Bindschadler ◽  
S. Shabtaie ◽  
C. R. Bentley

Detailed measurements of surface topography, ice motion, snow accumulation, and ice thickness were made in January 1974 and again in December 1984, along an 8 km stake network extending from the ice sheet, across the grounding line, and on to floating ice shelf in the mouth of slow-moving Ice Stream C, which flows into the eastern side of Ross Ice Shelf, Antarctica. During the 11 years between surveys, the grounding line retreated by approximately 300 m. This was caused by net thinning of the ice shelf, which we believe to be a response to the comparatively recent, major decrease in ice discharge from Ice Stream C. Farther inland, snow accumulation is not balanced by ice discharge, and the ice stream is growing progressively thicker.There is evidence that the adjacent Ice Stream B has slowed significantly over the last decade, and this may be an early indication that this fast-moving ice stream is about to enter a period of stagnation similar to that of Ice Stream C. Indeed, these large ice streams flowing from West Antarctica into Ross Ice Shelf may oscillate between periods of relative stagnation and major activity. During active periods, large areas of ice shelf thicken and run aground on seabed to form extensive “ice plains” in the mouth of the ice stream. Ultimately, these become too large to be pushed seaward by the ice stream, which then slows down and enters a period of stagnation. During this period, the grounding line of the ice plain retreats, as we observe today in the mouth of Ice Stream C, because nearby ice shelf, no longer compressed by ice-stream motion, progressively thins. At the same time, water within the deformable till beneath the ice starts to freeze on to the base of the ice stream, and snow accumulation progressively increases the ice thickness. A new phase of activity would be initiated when the increasing gravity potential of the ice stream exceeds the total resistance of the shrinking ice plain and the thinning layer of deformable till at the bed. This could occur rapidly if the effects of the shrinking ice plain outweigh those of the thinning (and therefore stiffening) till. Otherwise, the till layer would finally become completely frozen, and the ice stream would have to thicken sufficiently to initiate significant heating by internal deformation, followed by basal melting and finally saturation of an adequate thickness of till; this could take some thousands of years.


1988 ◽  
Vol 11 ◽  
pp. 202
Author(s):  
D. R. MacAyeal ◽  
R. A. Bindschadler

Field data is presented to support the hypothesis that Crary Ice Rise (on Ross Ice Shelf, Fig. 1) has substantially increased in area over the last 500 years, in response to ice advection through the mouth of Ice Stream B. The up-stream end of the ice rise is now surrounded by ice shelf that is currently thickening at 0.44 0.06 m/year (under an assumed zero basal melting rate). This rate of thickening suggests that the ice rise's contribution to back-stress resistance of Ice Stream B's flow, presently calculated to be 50% of the total back stress, is growing in the course of time. We speculate that this current development of the ice rise is the precursor to the possible future stagnation of Ice Stream B. It is convenient to conceptualize a possible see-saw oscillation between ice-stream surging and ice-rise build-up.


1998 ◽  
Vol 44 (147) ◽  
pp. 223-230 ◽  
Author(s):  
Engelhardt Hermann ◽  
Kamb Barclay

AbstractA “tethered stake” apparatus is used to measure basal sliding in a borehole on Ice Stream B, West Antaretica, about 300 km upstream (east) from its grounding line near the head of the Ross Ice Shelf. A metal stake, emplaced at the top of a laver of unfrozen till underlying the ice, is connected by a tether line to a metering unit that measures the tether line as it is pulled out from the borehole by the stake as a result of basal sliding. The measured sliding motion includes any actual slip across the ice–till interface and may include in addition a possible contribution from shear deformation of till within about 3 cm of the interface. This 3 cm figure follows from a qualitative model of the movements of the stake in the course of the experiment, based on features of the record of apparent sliding. Alternative but less likely models would increase the figure from 3 cm to 10 cm or 25 cm. In any case it is small compared to the seismically inferred till thickness of 9 m. Measured apparent sliding averages 69% of the total motion of 1.2 m d−1over 26 days of observation if a 3.5 day period of slow apparent sliding (8% of the total motion) is included in the average. The occurrence of the slow period raises the possibility that the sliding motion switches back and forth between c.80% and c. 8% of the total motion, on a time-scale of a few days. However, it is likely that the period of slow apparent sliding represents instead a period when the stake got caught on the ice sole. If the slow period is therefore omitted, the indicated average basal sliding rate is 83% of the total motion. In either case, basal sliding predominates as the cause of the rapid ice-stream motion. In the last 2 days of observation the average apparent sliding rate reached 1.17 m d−1, essentially 100% of the motion of the ice stream. If till deformation contributes significantly to the ice-stream motion, the contribution is concentrated in a shear zone 3 cm to possibly 25 cm thick at the top of the 9 m thick till layer. These observations, if applicable to the West Antaretic ice sheet in general, pose complications in modeling the rapid ice-streaming motion.


1998 ◽  
Vol 44 (147) ◽  
pp. 223-230 ◽  
Author(s):  
Engelhardt Hermann ◽  
Kamb Barclay

AbstractA “tethered stake” apparatus is used to measure basal sliding in a borehole on Ice Stream B, West Antaretica, about 300 km upstream (east) from its grounding line near the head of the Ross Ice Shelf. A metal stake, emplaced at the top of a laver of unfrozen till underlying the ice, is connected by a tether line to a metering unit that measures the tether line as it is pulled out from the borehole by the stake as a result of basal sliding. The measured sliding motion includes any actual slip across the ice–till interface and may include in addition a possible contribution from shear deformation of till within about 3 cm of the interface. This 3 cm figure follows from a qualitative model of the movements of the stake in the course of the experiment, based on features of the record of apparent sliding. Alternative but less likely models would increase the figure from 3 cm to 10 cm or 25 cm. In any case it is small compared to the seismically inferred till thickness of 9 m. Measured apparent sliding averages 69% of the total motion of 1.2 m d−1over 26 days of observation if a 3.5 day period of slow apparent sliding (8% of the total motion) is included in the average. The occurrence of the slow period raises the possibility that the sliding motion switches back and forth between c.80% and c. 8% of the total motion, on a time-scale of a few days. However, it is likely that the period of slow apparent sliding represents instead a period when the stake got caught on the ice sole. If the slow period is therefore omitted, the indicated average basal sliding rate is 83% of the total motion. In either case, basal sliding predominates as the cause of the rapid ice-stream motion. In the last 2 days of observation the average apparent sliding rate reached 1.17 m d−1, essentially 100% of the motion of the ice stream. If till deformation contributes significantly to the ice-stream motion, the contribution is concentrated in a shear zone 3 cm to possibly 25 cm thick at the top of the 9 m thick till layer. These observations, if applicable to the West Antaretic ice sheet in general, pose complications in modeling the rapid ice-streaming motion.


1988 ◽  
Vol 11 ◽  
pp. 202-202
Author(s):  
D. R. MacAyeal ◽  
R. A. Bindschadler

Field data is presented to support the hypothesis that Crary Ice Rise (on Ross Ice Shelf, Fig. 1) has substantially increased in area over the last 500 years, in response to ice advection through the mouth of Ice Stream B. The up-stream end of the ice rise is now surrounded by ice shelf that is currently thickening at 0.44 0.06 m/year (under an assumed zero basal melting rate). This rate of thickening suggests that the ice rise's contribution to back-stress resistance of Ice Stream B's flow, presently calculated to be 50% of the total back stress, is growing in the course of time. We speculate that this current development of the ice rise is the precursor to the possible future stagnation of Ice Stream B. It is convenient to conceptualize a possible see-saw oscillation between ice-stream surging and ice-rise build-up.


2016 ◽  
Vol 43 (1) ◽  
pp. 250-255 ◽  
Author(s):  
Oliver J. Marsh ◽  
Helen A. Fricker ◽  
Matthew R. Siegfried ◽  
Knut Christianson ◽  
Keith W. Nicholls ◽  
...  

2012 ◽  
Vol 58 (212) ◽  
pp. 1227-1244 ◽  
Author(s):  
Carl V. Gladish ◽  
David M. Holland ◽  
Paul R. Holland ◽  
Stephen F. Price

AbstractA numerical model for an interacting ice shelf and ocean is presented in which the ice- shelf base exhibits a channelized morphology similar to that observed beneath Petermann Gletscher’s (Greenland) floating ice shelf. Channels are initiated by irregularities in the ice along the grounding line and then enlarged by ocean melting. To a first approximation, spatially variable basal melting seaward of the grounding line acts as a steel-rule die or a stencil, imparting a channelized form to the ice base as it passes by. Ocean circulation in the region of high melt is inertial in the along-channel direction and geostrophically balanced in the transverse direction. Melt rates depend on the wavelength of imposed variations in ice thickness where it enters the shelf, with shorter wavelengths reducing overall melting. Petermann Gletscher’s narrow basal channels may therefore act to preserve the ice shelf against excessive melting. Overall melting in the model increases for a warming of the subsurface water. The same sensitivity holds for very slight cooling, but for cooling of a few tenths of a degree a reorganization of the spatial pattern of melting leads, surprisingly, to catastrophic thinning of the ice shelf 12 km from the grounding line. Subglacial discharge of fresh water along the grounding line increases overall melting. The eventual steady state depends on when discharge is initiated in the transient history of the ice, showing that multiple steady states of the coupled system exist in general.


2017 ◽  
Vol 63 (242) ◽  
pp. 959-972
Author(s):  
METTE K. GILLESPIE ◽  
WENDY LAWSON ◽  
WOLFGANG RACK ◽  
BRIAN ANDERSON ◽  
DONALD D. BLANKENSHIP ◽  
...  

ABSTRACTThe Darwin–Hatherton Glacial system (DHGS) connects the East Antarctic Ice Sheet (EAIS) with the Ross Ice Shelf and is a key area for understanding past variations in ice thickness of surrounding ice masses. Here we present the first detailed measurements of ice thickness and grounding zone characteristics of the DHGS as well as new measurements of ice velocity. The results illustrate the changes that occur in glacier geometry and ice flux as ice flows from the polar plateau and into the Ross Ice Shelf. The ice discharge and the mean basal ice shelf melt for the first 8.5 km downstream of the grounding line amount to 0.24 ± 0.05 km3 a−1 and 0.3 ± 0.1 m a−1, respectively. As the ice begins to float, ice thickness decreases rapidly and basal terraces develop. Constructed maps of glacier geometry suggest that ice drainage from the EAIS into the Darwin Glacier occurs primarily through a deep subglacial canyon. By contrast, ice thins to <200 m at the head of the much slower flowing Hatherton Glacier. The glaciological field study establishes an improved basis for the interpretation of glacial drift sheets at the link between the EAIS and the Ross Ice Sheet.


1982 ◽  
Vol 3 ◽  
pp. 341 ◽  
Author(s):  
Kenneth C. Jezek ◽  
Charles R. Bentley

Surface and airborne radar sounding data were used to identify and map fields of bottom crevasses on the Ross Ice Shelf. Two major concentrations of crevasses were found, one along the grid-eastern grounding line and another, made up of eight smaller sites, grid-west of Crary Ice Rise. Based upon an analysis of bottom crevasse heights and locations, and of the strength of radar waves diffracted from the apex and bottom corners of the gridcrevasses, we conclude that the crevasses are formed at discrete locations on the ice shelf. By comparing the locations of crevasse formation with ice thickness and bottom topography, we conclude that most of the crevasse sites are associated with grounding. Hence we have postulated that six grounded areas, in addition to Crary Ice Rise and Roosevelt Island, exist in the grid-western sector of the ice shelf. These pinning points may be important for interpreting the dynamics of the West Antarctic ice sheet.


2004 ◽  
Vol 16 (3) ◽  
pp. 345-354 ◽  
Author(s):  
JAMES P. KENNEALLY ◽  
TERENCE J. HUGHES

East Antarctic ice discharged by Byrd Glacier continues as a flowband to the calving front of the Ross Ice Shelf. Flow across the grounding line changes from compressive to extensive as it leaves the fjord through the Transantarctic Mountains occupied by Byrd Glacier. Magnitudes of the longitudinal compressive stress that suppress opening of transverse tensile cracks are calculated for the flowband. As compressive back stresses diminish, initial depths and subsequent growth of these cracks, and their spacing, are calculated using theories of elastic and ductile fracture mechanics. Cracks are initially about one millimeter wide, with approximately 30 m depths and 20 m spacings for a back stress of 83 kPa at a distance of 50 km beyond the fjord, where floating ice is 600 m thick. When these crevasses penetrate the whole ice thickness, they release tabular icebergs 20 km to 100 km wide, spaced parallel to the calving front of the Ross Ice Shelf.


Sign in / Sign up

Export Citation Format

Share Document