scholarly journals Geometry and ice dynamics of the Darwin–Hatherton glacial system, Transantarctic Mountains

2017 ◽  
Vol 63 (242) ◽  
pp. 959-972
Author(s):  
METTE K. GILLESPIE ◽  
WENDY LAWSON ◽  
WOLFGANG RACK ◽  
BRIAN ANDERSON ◽  
DONALD D. BLANKENSHIP ◽  
...  

ABSTRACTThe Darwin–Hatherton Glacial system (DHGS) connects the East Antarctic Ice Sheet (EAIS) with the Ross Ice Shelf and is a key area for understanding past variations in ice thickness of surrounding ice masses. Here we present the first detailed measurements of ice thickness and grounding zone characteristics of the DHGS as well as new measurements of ice velocity. The results illustrate the changes that occur in glacier geometry and ice flux as ice flows from the polar plateau and into the Ross Ice Shelf. The ice discharge and the mean basal ice shelf melt for the first 8.5 km downstream of the grounding line amount to 0.24 ± 0.05 km3 a−1 and 0.3 ± 0.1 m a−1, respectively. As the ice begins to float, ice thickness decreases rapidly and basal terraces develop. Constructed maps of glacier geometry suggest that ice drainage from the EAIS into the Darwin Glacier occurs primarily through a deep subglacial canyon. By contrast, ice thins to <200 m at the head of the much slower flowing Hatherton Glacier. The glaciological field study establishes an improved basis for the interpretation of glacial drift sheets at the link between the EAIS and the Ross Ice Sheet.

2021 ◽  
Author(s):  
Yijing Lin ◽  
Yan Liu

&lt;p&gt;Input-Output method (IOM) is a common method for estimating ice sheet mass balance, which shows ice dynamics in mass loss to analyze the response of ice sheet to climate change. However, compared with the altimetry method and the gravity method, the mass balance estimation using IOM has relatively large uncertainty. Assessing the impact of the uncertainties of each component in IOM on the mass balance estimation is conducive to effectively lowering uncertainty in the Antarctic mass budget estimate but of which there has been little quantitative analysis. We assess the uncertainty in the mass balance due to methodological differences in IOM, compare the differences of surface mass balance (SMB, input) in diverse versions and at different spatial scales, and evaluate the uncertainty in ice discharge (FG, output) due to data uncertainty in ice thickness, ice velocity and grounding line. Results showed that the SMBs at different scales are more divergent than that in different versions, resulting in a variation of 216.7 Gt yr&lt;sup&gt;-1&lt;/sup&gt; in Antarctica, of which the Antarctic peninsula accounts for 55.1%, followed by East Antarctica. The largest variation in FG due to uncertainty in the location of the grounding line is observed, where a 1 km retreat and a 1 km advance of the Antarctic grounding line would respectively result in FG reductions of 82.8 Gt yr&lt;sup&gt;-1&lt;/sup&gt; and 272.7 Gt yr&lt;sup&gt;-1&lt;/sup&gt;, which are significant in all regions, with the FG corresponding to a 1 km retreat of grounding line in the islands being closer to the multi-year average SMB of the islands. The difference in Antarctic FG due to different ice thickness products is 124.4 Gt yr&lt;sup&gt;-1&lt;/sup&gt;, consistent with the trend in the thickness of ice shelves, and that due to different ice velocity products is only 18.7 Gt yr&lt;sup&gt;-1&lt;/sup&gt;. Within the same margin of error, systematic errors in ice thickness and ice velocity result in an order of magnitude higher difference of FG than random errors.&lt;/p&gt;


2014 ◽  
Vol 5 (2) ◽  
pp. 271-293 ◽  
Author(s):  
A. Levermann ◽  
R. Winkelmann ◽  
S. Nowicki ◽  
J. L. Fastook ◽  
K. Frieler ◽  
...  

Abstract. The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.


2021 ◽  
Author(s):  
◽  
Sanne M Maas

<p>Sediment Cores collected from the shallow sub-sea floor beneath the Ross Ice Shelf at Coulman High have been analysed using sedimentological techniques to constrain the retreat history of the Last Glacial Maximum (LGM) ice sheet in the Ross Embayment, and to determine when the modern-day calving line location of the Ross Ice Shelf was established. A characteristic vertical succession of facies was identified in these cores, that can be linked to ice sheet and ice shelf extent in the Ross Embayment. The base of this succession consists of unconsolidated, clast rich muddy diamicts, and is interpreted to be deposited subglacially or in a grounding line proximal environment on account of a distinct provenance in the clast content which can only be attributed to subglacial transport from the Byrd Glacier 400 km to the south of the drill site. This is overlain by a mud with abundant clasts, similar in character to a granulated facies that has been documented previously in the Ross Sea, and is interpreted as being a characteristic grounding line lift-o facies in a sub-ice shelf setting. These glacial proximal facies pass upward into a mud, which comprises three distinctive units. i) Muds with sub-mm scale laminae resulting from traction currents occurring near the grounding line in a sub-ice shelf environment overlain by, ii) muds with sub-mm scale laminae and elevated biogenic content (diatoms and foraminifera) and sand/gravel clasts, interpreted as being deposited in open water conditions, passing up into a iii) bioturbated mud, interpreted as being deposited in sub-ice shelf environment, proximal to the calving line. The uppermost facies consists of a 20 cm thick diatom ooze with abundant clasts and pervasive bioturbation, indicative of a condensed section deposited during periodically open marine conditions. During post-LGM retreat of the ice sheet margin in western Ross Sea, and prior to the first open marine conditions at Coulman High, it is hypothesized that the grounding and calving line were in relative close proximity to each other. As the calving line became "pinned" in the Ross Island region, the grounding line likely continued its retreat toward its present day location. New corrected radiocarbon ages on the foraminifera shells in the interval of laminated muds with clasts, provide some of the first inorganic ages from the Ross Sea, and strengthen inferences from previous studies, that the first open marine conditions in the vicinity of Ross Island were 7,600 14C yr BP. While retreat of the calving line south of its present day position is implied during this period of mid-Holocene warmth prior to its re-advance, at present it is not possible to constrain the magnitude of retreat or attribute this to climate change rather than normal calving dynamics.</p>


1979 ◽  
Vol 24 (90) ◽  
pp. 500 ◽  
Author(s):  
C. R. Bentley ◽  
L. Greischar

Abstract Taking various retreat-rates for the presumed grounded ice sheet in the Ross embayment during Wisconsin time, as calculated by Thomas (Thomas and Bentley, 1978), and assuming a time constant of 4400 years for isostatic rebound, a sea-floor uplift of 100±50 m still to be expected in the grid western part of the Ross Ice Shelf can be calculated. The expected uplift diminishes from grid west to grid east, and is probably negligible in the eastern half of the shelf area. There are extensive areas near the present grounding line where the water depth beneath the shelf is less than 100 m, so that uplift would lead to grounding. As grounding occurred, the neighboring ice shelf would thicken, causing grounding to advance farther. This process would probably extend the grounding line to a position running grid north-eastward across the shelf from the seaward end of Roosevelt Island, deeply indented by the extensions of the present ice streams. Floating ice would remain in the grid south-eastern half of the shelf.


2000 ◽  
Vol 46 (153) ◽  
pp. 197-205 ◽  
Author(s):  
Christoph Mayer ◽  
Martin J. Siegert

AbstractA numerical model of the ice-sheet/ice-shelf transition was used to investigate ice-sheet dynamics across the large subglacial lake beneath Vostok station, central East Antarctica. European Remote-sensing Satellite (ERS-1) altimetry of the ice surface and 60 MHz radio-echo sounding (RES) of the ice-sheet base and internal ice-sheet layering were used to develop a conceptual flowline across the ice sheet, which the model used as input. The model calculates horizontal and vertical velocities and stresses, from which particle flow paths can be obtained, and the ice-sheet temperature distribution. An inverse approach to modelling was adopted, where particle flow paths were forced to match those identified from internal RES layering. Results show that ice dynamics across the inflow grounding line are similar to an ice-sheet/ice-shelf transition. Model particle flow paths match internal RES layering when ice is (a) taken away from the ice base across the first 2 km of the flowline over the lake and (b) added to the base across the remainder of the lake. We contend that the process causing this transfer of ice is likely to be melting of ice and freezing of water at the ice–water interface. Other explanations, such as enhanced rates of accumulation over the grounding line, or three-dimensional convergent/divergent flow of ice are inconsistent with available measurements. Such melting and refreezing would be responsible for circulation and mixing of at least the surface layers of the lake water. Our model suggests that several tens of metres of refrozen “basal ice” would accrete from lake water to the ice sheet before the ice regrounds.


2013 ◽  
Vol 4 (2) ◽  
pp. 1117-1168 ◽  
Author(s):  
A. Levermann ◽  
R. Winkelmann ◽  
S. Nowicki ◽  
J. L. Fastook ◽  
K. Frieler ◽  
...  

Abstract. The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we derive dynamic ice-sheet response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. Under the assumptions of linear-response theory we project future ice-discharge for each model, each region and each of the four Representative Concentration Pathways (RCP) using oceanic temperatures from 19 comprehensive climate models of the Coupled Model Intercomparison Project, CMIP-5, and two ocean models from the EU-project Ice2Sea. The uncertainty in the climatic forcing, the oceanic response and the ice-model response is combined into an uncertainty range of future Antarctic ice-discharge induced from basal ice-shelf melt. The uncertainty range we derived for the Antarctic contribution to global sea-level rise from 1992 to 2011 is in full agreement with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time delayed warming of the oceanic subsurface compared with the surface air temperature. The median of the additional ice-loss for the 21st century (Table 6) is 0.07 m (66%-range: 0.02–0.14 m; 90%-range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 scenario and 0.09 m (66%-range: 0.04–0.21 m; 90%-range: 0.01–0.37 m) for the strongest RCP-8.5 if models with explicit ice-shelf representation are applied. These results were obtained using a time delay between the surface warming signal and the subsurface oceanic warming as observed in the CMIP-5 models. Without this time delay the values increase to 0.09 m (66%-range: 0.04–0.17 m; 90%-range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66%-range: 0.07–0.28 m; 90%-range: 0.04–0.43 m) for RCP-8.5. Our results are scenario dependent which is most visible in the upper percentiles of the distribution, i.e. highest contributions to sea level rise. All probability distributions, as provided in Fig. 12, are highly skewed towards high values. The applied ice-sheet models are coarse-resolution with limitations in the representation of grounding-line motion. However, we find the main uncertainty to be introduced by the external forcing to the ice-sheets, i.e. the climatic and oceanic uncertainty dominate. The scaling coefficients for the four different drainage basins provide valuable information for further assessments of future Antarctic ice discharge.


2021 ◽  
Author(s):  
Yijing Lin ◽  
Yan Liu ◽  
Zhitong Yu ◽  
Xiao Cheng ◽  
Qiang Shen ◽  
...  

Abstract. The input-output method (IOM) is one of the most popular methods of estimating the ice sheet mass balance (MB), with a significant advantage in presenting the dynamics response of ice to climate change. Assessing the uncertainties of the MB estimation using the IOM is crucial to gaining a clear understanding of the Antarctic ice-sheet mass budget. Here, we introduce a framework for assessing the uncertainties in the MB estimation due to the methodological differences in the IOM, the impact of the parameterization and scale effect on the modeled surface mass balance (SMB, input), and the impact of the uncertainties of ice thickness, ice velocity, and grounding line data on ice discharge (D, output). For the assessment of the D’s uncertainty, we present D at a fine scale. Compared with the goal of determining the Antarctic MB within an uncertainty of 15 Gt yr−1, we found that the different strategies employed in the methods cause considerable uncertainties in the annual MB estimation. The uncertainty of the RACMO2.3 SMB caused by its parameterization can reach 20.4 Gt yr−1, while that due to the scale effect is up to 216.7 Gt yr−1. The observation precisions of the MEaSUREs InSAR-based velocity (1–17 m yr−1), the airborne radio-echo sounder thickness (±100 m), and the MEaSUREs InSAR-based grounding line (±100 m) contribute uncertainties of 17.1 Gt yr−1, 10.5 ± 2.7 Gt yr−1 and 8.0~27.8 Gt yr−1 to the D, respectively. However, the D’s uncertainty due to the remarkable ice thickness data gap, which is represented by the thickness difference between the BEDMAP2 and the BedMachine reaches 101.7 Gt yr−1, which indicates its dominant cause of the future D’s uncertainty. In addition, the interannual variability of D caused by the annual changes in the ice velocity and ice thickness are considerable compared with the target uncertainty of 15 Gt yr−1, which cannot be ignored in annual MB estimations.


2021 ◽  
Author(s):  
◽  
Sanne M Maas

<p>Sediment Cores collected from the shallow sub-sea floor beneath the Ross Ice Shelf at Coulman High have been analysed using sedimentological techniques to constrain the retreat history of the Last Glacial Maximum (LGM) ice sheet in the Ross Embayment, and to determine when the modern-day calving line location of the Ross Ice Shelf was established. A characteristic vertical succession of facies was identified in these cores, that can be linked to ice sheet and ice shelf extent in the Ross Embayment. The base of this succession consists of unconsolidated, clast rich muddy diamicts, and is interpreted to be deposited subglacially or in a grounding line proximal environment on account of a distinct provenance in the clast content which can only be attributed to subglacial transport from the Byrd Glacier 400 km to the south of the drill site. This is overlain by a mud with abundant clasts, similar in character to a granulated facies that has been documented previously in the Ross Sea, and is interpreted as being a characteristic grounding line lift-o facies in a sub-ice shelf setting. These glacial proximal facies pass upward into a mud, which comprises three distinctive units. i) Muds with sub-mm scale laminae resulting from traction currents occurring near the grounding line in a sub-ice shelf environment overlain by, ii) muds with sub-mm scale laminae and elevated biogenic content (diatoms and foraminifera) and sand/gravel clasts, interpreted as being deposited in open water conditions, passing up into a iii) bioturbated mud, interpreted as being deposited in sub-ice shelf environment, proximal to the calving line. The uppermost facies consists of a 20 cm thick diatom ooze with abundant clasts and pervasive bioturbation, indicative of a condensed section deposited during periodically open marine conditions. During post-LGM retreat of the ice sheet margin in western Ross Sea, and prior to the first open marine conditions at Coulman High, it is hypothesized that the grounding and calving line were in relative close proximity to each other. As the calving line became "pinned" in the Ross Island region, the grounding line likely continued its retreat toward its present day location. New corrected radiocarbon ages on the foraminifera shells in the interval of laminated muds with clasts, provide some of the first inorganic ages from the Ross Sea, and strengthen inferences from previous studies, that the first open marine conditions in the vicinity of Ross Island were 7,600 14C yr BP. While retreat of the calving line south of its present day position is implied during this period of mid-Holocene warmth prior to its re-advance, at present it is not possible to constrain the magnitude of retreat or attribute this to climate change rather than normal calving dynamics.</p>


2017 ◽  
Author(s):  
Sainan Sun ◽  
Stephen Cornford ◽  
Rupert Gladstone ◽  
Liyun Zhao ◽  
John Moore

Abstract. Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. Here, we explore how the application of a continuum damage model (CDM) to the prognostic ice sheet model BISICLES can account for the effects of fracture processes on viscous ice dynamics. Damage is created by the local stress field and advects downstream. This continuum damage model is coupled to the dynamical ice flow model by decreasing the effective viscosity proportional to the damage field. To evaluate the physical role of the fracture process on large-scale ice sheet dynamics and also discern the relative importance of the parameters used in the damage model, we carry out a suite of numerical experiments based on the MISMIP+ (Marine Ice Sheet Model Intercomparison Project) marine ice sheet geometry. We find that behavior of the simulated marine ice sheet is sensitive to fracture processes on the ice shelf. In the case of a geometry that produces strong lateral stress, the stiffness of ice around the grounding line is essential to ice sheet evolution, with softer or more damaged ice leading to thinning and grounding line retreat.


1982 ◽  
Vol 3 ◽  
pp. 341 ◽  
Author(s):  
Kenneth C. Jezek ◽  
Charles R. Bentley

Surface and airborne radar sounding data were used to identify and map fields of bottom crevasses on the Ross Ice Shelf. Two major concentrations of crevasses were found, one along the grid-eastern grounding line and another, made up of eight smaller sites, grid-west of Crary Ice Rise. Based upon an analysis of bottom crevasse heights and locations, and of the strength of radar waves diffracted from the apex and bottom corners of the gridcrevasses, we conclude that the crevasses are formed at discrete locations on the ice shelf. By comparing the locations of crevasse formation with ice thickness and bottom topography, we conclude that most of the crevasse sites are associated with grounding. Hence we have postulated that six grounded areas, in addition to Crary Ice Rise and Roosevelt Island, exist in the grid-western sector of the ice shelf. These pinning points may be important for interpreting the dynamics of the West Antarctic ice sheet.


Sign in / Sign up

Export Citation Format

Share Document