scholarly journals The Paul Trap Simulator Experiment

2003 ◽  
Vol 21 (4) ◽  
pp. 549-552 ◽  
Author(s):  
ERIK P. GILSON ◽  
RONALD C. DAVIDSON ◽  
PHILIP C. EFTHIMION ◽  
RICHARD MAJESKI ◽  
HONG QIN

The assembly of the Paul Trap Simulator Experiment (PTSX) is now complete and experimental operations have begun. The purpose of PTSX, a compact laboratory facility, is to simulate the nonlinear dynamics of intense charged particle beam propagation over a large distance through an alternating-gradient transport system. The simulation is possible because the quadrupole electric fields of the cylindrical Paul trap exert radial forces on the charged particles that are analogous to the radial forces that a periodic focusing quadrupole magnetic field exert on the beam particles in the beam frame. By controlling the waveform applied to the walls of the trap, PTSX will explore physics issues such as beam mismatch, envelope instabilities, halo particle production, compression techniques, collective wave excitations, and beam profile effects.

2007 ◽  
Vol 73 (5) ◽  
pp. 627-634 ◽  
Author(s):  
J. T. MENDONÇA ◽  
L. O. SILVA ◽  
R. BINGHAM

AbstractA new configuration for the laser accelerator is proposed, which is inspired by the relativistic photon mirror effect. The material mirror is replaced here by an intense laser pulse, acting as a photon mirror for the incoming charged particles. A sufficient condition for particle reflection at such a photon mirror is established and three types of particle trajectories are described. A snow-plow acceleration regime is identified and quantitatively defined. Production of intense radiation bursts by the charged particle beam during the reflection process is also demonstrated.


2018 ◽  
Vol 9 ◽  
pp. 2855-2882 ◽  
Author(s):  
Philip D Prewett ◽  
Cornelis W Hagen ◽  
Claudia Lenk ◽  
Steve Lenk ◽  
Marcus Kaestner ◽  
...  

Following a brief historical summary of the way in which electron beam lithography developed out of the scanning electron microscope, three state-of-the-art charged-particle beam nanopatterning technologies are considered. All three have been the subject of a recently completed European Union Project entitled “Single Nanometre Manufacturing: Beyond CMOS”. Scanning helium ion beam lithography has the advantages of virtually zero proximity effect, nanoscale patterning capability and high sensitivity in combination with a novel fullerene resist based on the sub-nanometre C60 molecule. The shot noise-limited minimum linewidth achieved to date is 6 nm. The second technology, focused electron induced processing (FEBIP), uses a nozzle-dispensed precursor gas either to etch or to deposit patterns on the nanometre scale without the need for resist. The process has potential for high throughput enhancement using multiple electron beams and a system employing up to 196 beams is under development based on a commercial SEM platform. Among its potential applications is the manufacture of templates for nanoimprint lithography, NIL. This is also a target application for the third and final charged particle technology, viz. field emission electron scanning probe lithography, FE-eSPL. This has been developed out of scanning tunneling microscopy using lower-energy electrons (tens of electronvolts rather than the tens of kiloelectronvolts of the other techniques). It has the considerable advantage of being employed without the need for a vacuum system, in ambient air and is capable of sub-10 nm patterning using either developable resists or a self-developing mode applicable for many polymeric resists, which is preferred. Like FEBIP it is potentially capable of massive parallelization for applications requiring high throughput.


Sign in / Sign up

Export Citation Format

Share Document