Offline decoupled path planning approach for effective coordination of multiple robots

Robotica ◽  
2009 ◽  
Vol 28 (4) ◽  
pp. 477-491 ◽  
Author(s):  
Shital S. Chiddarwar ◽  
N. Ramesh Babu

SUMMARYIn this paper, a decoupled offline path planning approach for determining the collision-free path of end effectors of multiple robots involved in coordinated manipulation is proposed. The proposed approach for decoupled path planning is a two-phase approach in which the path for coordinated manipulation is generated with a coupled interaction between collision checking and path planning techniques. Collision checking is done by modelling the links and environment of robot using swept sphere volume technique and utilizing minimum distance heuristic for interference check. While determining the path of the end effector of robots involved in coordinated manipulation, the obstacles present in the workspace are considered as static obstacles and the links of the robots are viewed as dynamic obstacles by the other robot. Coordination is done in offline mode by implementing replanning strategy which adopts incremental A* algorithm for searching the collision-free path. The effectiveness of proposed decoupled approach is demonstrated by considering two examples having multiple six degrees of freedom robots operating in 3D work cell environment with certain static obstacles.

Author(s):  
Xiaoxiao Zhuang ◽  
Guangsheng Feng ◽  
Haibin Lv ◽  
Hongwu Lv ◽  
Huiqiang Wang ◽  
...  

Author(s):  
Patricia Ben-Horin (Dombiak) ◽  
Moshe Shoham ◽  
Gershon Grossman

Abstract A new structure of a six degrees-of-freedom robot is described in this paper. The robot presents two new features: three inflatable links that constitute the robot structure and parallel robot architecture with large workspace. These features result in a lightweight and easy to deploy robot. The structure, kinematics and path planning of the experimental robot are presented.


2000 ◽  
Vol 12 (5) ◽  
pp. 527-533 ◽  
Author(s):  
Masanori Hariyama ◽  
Michitaka Kameyama

This paper presents a fast path planning method to find a feasible collision-free path. A collision-free path is searched for by iterations of selection of a robot configuration and collision detection for it. A most promising configuration is selected according to a minimum distance from every point in 3-D workspace and obstacles. The configuration selection keeps a robot as far away as possible from obstacles, and reduces the number of configurations for collision detection. Moreover, a highly-parallel processor based on logicin-memory architecture is proposed to overcome a transfer bottleneck between a memory and processing elements.


2021 ◽  
Author(s):  
Weihua Li ◽  
Bowen Chen ◽  
Pengpeng Li ◽  
Xuewen Geng ◽  
Jianfeng Wang

Robotica ◽  
2008 ◽  
Vol 26 (3) ◽  
pp. 405-413 ◽  
Author(s):  
Iman Ebrahimi ◽  
Juan A. Carretero ◽  
Roger Boudreau

SUMMARYIn this work, the 3-RPRR, a new kinematically redundant planar parallel manipulator with six-degrees-of-freedom, is presented. First, the manipulator is introduced and its inverse displacement problem discussed. Then, all types of singularities of the 3-RPRR manipulator are analysed and demonstrated. Thereafter, the dexterous workspace is geometrically obtained and compared with the non-redundant 3-PRR planar parallel manipulator. Finally, based on a geometrical measure of proximity to singular configurations and the condition number of the manipulators' Jacobian matrices, actuation schemes for the manipulators are obtained. Different actuation schemes for a given path are obtained and the quality of their actuation schemes are compared. It is shown that the proposed manipulator is capable of following a path while avoiding the singularities.


Robotica ◽  
2015 ◽  
Vol 34 (12) ◽  
pp. 2689-2728 ◽  
Author(s):  
Feng Han ◽  
Kui Sun ◽  
Yu Liu ◽  
Hong Liu

SUMMARYTwo identical end-effectors are indispensable for self-relocation of a space manipulator, which is an effective way of extending its servicing capability. The prototype design is intimately linked to the requirements. The significant features and functionality of the end-effector and its grapple fixture are described, including the key analysis efforts. The characteristics of the end-effector and their suitability for self-relocation and payload handling were confirmed by testing, which used two prototype end-effectors, a semi-physical simulation testbed system with two, six degrees of freedom (DOF) industrial robot arms, and an air-bearing testbed system with a seven DOF manipulator. The results demonstrate that the end-effector satisfies the requirements and it can work well in a simulated space environment. With the compliance motion of the manipulator, the end-effector can perform soft capture and the manipulator can securely self-relocate and handle the payload.


1993 ◽  
Vol 115 (3) ◽  
pp. 679-684 ◽  
Author(s):  
D. C. H. Yang

This paper presents a method and an algorithm for the planning of collision-free paths through obstacles for robots end-effectors or autonomously guided vehicles. Fifth-order nonperiodic B-spline curves are chosen for this purpose. The main ideas are twofold: first, to avoid collision by moving around obstacles from the less blocking sides; and second, to assign two control points to all vertices of the control polygon. This method guarantees the generation of paths which have C3 continuity everywhere and satisfy the collision-free requirement. In addition, the obstacles can be of any shape, and the computational complexity and difficulty are relatively low. A computer code is developed for the implementation of this method. Case studies are given for illustration.


Sign in / Sign up

Export Citation Format

Share Document