planar parallel manipulator
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 30)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Ben Haughey

<p>Development in pick-and-place robotic manipulators continues to grow as factory processes are streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops several tools to assist in the design process. The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM are explored and used to examine the reachable workspace of the manipulator. This method of analysis also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the workspace. A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in terms of its cycle-time. The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator above the workspace. The solution space of all feasible combinations of these dimensions is produced revealing cycle-times with a large degree of variation over the same path. Several optimisation algorithms are applied to finding the manipulator configuration with the fastest cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown to outperform the other techniques.</p>


2021 ◽  
Author(s):  
◽  
Ben Haughey

<p>Development in pick-and-place robotic manipulators continues to grow as factory processes are streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops several tools to assist in the design process. The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM are explored and used to examine the reachable workspace of the manipulator. This method of analysis also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the workspace. A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in terms of its cycle-time. The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator above the workspace. The solution space of all feasible combinations of these dimensions is produced revealing cycle-times with a large degree of variation over the same path. Several optimisation algorithms are applied to finding the manipulator configuration with the fastest cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown to outperform the other techniques.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Amin Valizadeh ◽  
Morteza Shariatee

Thanks to their advantages over rigid ones, interest for lightweight parallel manipulator was increased. Besides, structural flexibility effects at high operational speeds are more significant. Thus, developing an appropriate model for the assessment of the dynamic properties of flexible mechanisms and linkages to gain effective vibration control will raise high demand. Therefore, this paper represents the dynamic and kinematic modeling using the assumed mode method and first-type Lagrange equations of the 2-DOF planar parallel manipulator with two flexible links. To truly predict vibrations of the manipulator without any major simplifying assumptions, nonlinear dynamic modeling, which thoroughly attempts to represent the flexible behavior of the links, is considered. As a result, an active damping approach is being studied with PZT actuators. The results show that this approach is effective in damping the vibrations of the links that give accurate trajectory control.


2021 ◽  
Author(s):  
Xinxin Zhang ◽  
Huafeng Ding ◽  
Min Li ◽  
Andrés Kecskeméthy

Abstract In this paper, an iterative learning control (ILC) method based on sliding mode technique is proposed for hybrid force/position control of robot manipulators. Different from traditional ILC, the main purpose of the proposed ILC is to learn the dynamic parameters rather than the control signals. The sliding mode technique is applied to enhance the robustness of the proposed ILC method against external disturbances and noise. The switching gain of the sliding mode term is time-varying and learned by ILC such that the chattering is suppressed effectively compared to traditional sliding mode control (SMC). Simulation studies are performed on a two degrees of freedom planar parallel manipulator. Simulation results demonstrate that the proposed method can achieve higher force/position tracking performance than the traditional SMC and ILC.


2021 ◽  
pp. 1-13
Author(s):  
Marc Arsenault ◽  
Roger A. Boudreau ◽  
Scott B. Nokleby

Abstract An algorithm is developed to determine the Available Force Set (AFS) of the 3-RPRR kinematically-redundant planar parallel manipulator. The results of the algorithm are verified against a brute force approach and are found to yield exact results with significantly less computational time. The use of the AFS in a robot design context is illustrated through the analysis of two performance indices: the maximum pure force capable of being applied in any direction and the maximum pure force capable of being applied in a given direction. The algorithm is used to compute the AFS and the performance indices throughout the 3-RPRR robot's workspace. The proposed methodology is a useful tool for the design and analysis of the 3-RPRR robot and could be adapted to other kinematically-redundant planar parallel manipulators.


Author(s):  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Zhaowei Xiang ◽  
Ran Yan ◽  
Rulong Tan ◽  
...  

Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Roger Boudreau ◽  
Scott Nokleby ◽  
Marise Gallant

SUMMARY This paper presents a methodology to obtain the wrench capabilities of a kinematically redundant planar parallel manipulator using a wrench polytope approach. A methodology proposed by others for non-redundant and actuation-redundant manipulators is adapted to a kinematically redundant manipulator. Four wrench capabilities are examined: a pure force analysis, the maximum force for a prescribed moment, the maximum reachable force, and the maximum moment with a prescribed force. The proposed methodology, which finds the exact explicit solution for three of the four wrench capabilities, does not use optimization and is very efficient.


Sign in / Sign up

Export Citation Format

Share Document