Total species count in a Costa Rican tropical rain forest

1985 ◽  
Vol 1 (4) ◽  
pp. 375-378 ◽  
Author(s):  
T. C. Whitmore ◽  
R. Peralta ◽  
K. Brown
Biotropica ◽  
1972 ◽  
Vol 4 (3) ◽  
pp. 152 ◽  
Author(s):  
Allen M. Young

Zootaxa ◽  
2003 ◽  
Vol 177 (1) ◽  
pp. 1 ◽  
Author(s):  
ŁœUKASZ KACZMAREK

Moss samples collected near the research station “La Selva” on the edge of Costa Rican tropical rain forest has yielded three species of Tardigrada: Hypsibius pallidus Thulin, Astatumen trinacriae (Arcidiacono) and Macrobiotus polyopus Marcus. Another three unidentified species from the genus Macrobiotus were also found. All identified species are new for Costa Rica. A key to the identification of all known species from Costa Rica is given.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Enio B. Pereira ◽  
Daniel J.R. Nordemann

Para solicitação de resumo, entrar em contato com editor-chefe ([email protected]). 


2012 ◽  
Vol 28 (5) ◽  
pp. 437-443 ◽  
Author(s):  
Terrence P. McGlynn ◽  
Evan K. Poirson

Abstract:The decomposition of leaf litter is governed, in part, by litter invertebrates. In tropical rain forests, ants are dominant predators in the leaf litter and may alter litter decomposition through the action of a top-down control of food web structure. The role of ants in litter decomposition was investigated in a Costa Rican lowland rain forest with two experiments. In a mesocosm experiment, we manipulated ant presence in 50 ambient leaf-litter mesocosms. In a litterbag gradient experiment, Cecropia obtusifolia litter was used to measure decomposition rate constants across gradients in nutrients, ant density and richness, with 27 separate litterbag treatments for total arthropod exclusion or partial arthropod exclusion. After 2 mo, mass loss in mesocosms containing ants was 30.9%, significantly greater than the 23.5% mass loss in mesocosms without ants. In the litter bags with all arthropods excluded, decomposition was best accounted by the carbon: phosphorus content of soil (r2 = 0.41). In litter bags permitting smaller arthropods but excluding ants, decomposition was best explained by the local biomass of ants in the vicinity of the litter bags (r2 = 0.50). Once the microarthropod prey of ants are permitted to enter litterbags, the biomass of ants near the litterbags overtakes soil chemistry as the regulator of decomposition. In concert, these results support a working hypothesis that litter-dwelling ants are responsible for accelerating litter decomposition in lowland tropical rain forests.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke van Beest ◽  
Antoine Bourget ◽  
Julius Eckhard ◽  
Sakura Schäfer-Nameki

Abstract 5d superconformal field theories (SCFTs) can be obtained from 6d SCFTs by circle compactification and mass deformation. Successive decoupling of hypermultiplet matter and RG-flow generates a decoupling tree of descendant 5d SCFTs. In this paper we determine the magnetic quivers and Hasse diagrams, that encode the Higgs branches of 5d SCFTs, for entire decoupling trees. Central to this undertaking is the approach in [1], which, starting from the generalized toric polygons (GTPs) dual to 5-brane webs/tropical curves, provides a systematic and succinct derivation of magnetic quivers and their Hasse diagrams. The decoupling in the GTP description is straightforward, and generalizes the standard flop transitions of curves in toric polygons. We apply this approach to a large class of 5d KK-theories, and compute the Higgs branches for their descendants. In particular we determine the decoupling tree for all rank 2 5d SCFTs. For each tree, we also identify the flavor symmetry algebras from the magnetic quivers, including non-simply-laced flavor symmetries.


Sign in / Sign up

Export Citation Format

Share Document