The structure of a food web in a tropical rain forest in Malaysia based on carbon and nitrogen stable isotope ratios

2010 ◽  
Vol 26 (2) ◽  
pp. 205-214 ◽  
Author(s):  
Fujio Hyodo ◽  
Takashi Matsumoto ◽  
Yoko Takematsu ◽  
Tamaki Kamoi ◽  
Daisuke Fukuda ◽  
...  

Abstract:Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been used to study the structure of food webs. However, few studies have examined how a terrestrial food web can be depicted by this technique. We measured δ13C and δ15N in various consumers of four trophic groups (detritivores, herbivores, omnivores and predators), including vertebrates and invertebrates (14 orders, ≥24 families), as well as canopy and understorey leaves in a tropical rain forest in Malaysia. We found that δ13C and δ15N of the consumers differed significantly among the trophic groups. The predators had significantly higher δ13C than the herbivores, and were similar in δ13C to the detritivores, suggesting that most predators examined depend largely on below-ground food webs. δ15N was higher in predators than detritivores by about 3‰. The comparison of δ13C in plant materials and herbivores suggests that most herbivores are dependent on C fixed in the canopy layers. The vertebrates had significantly higher δ15N and δ13C than the invertebrates of the same trophic group, likely reflecting differences in the physiological processes and/or feeding habits. This study indicates that stable isotope techniques can help better understanding of the terrestrial food webs in terms of both trophic level and the linkage of above- and below-ground systems.

Author(s):  
Sosuke Otani ◽  
Sosuke Otani ◽  
Akira Umehara ◽  
Akira Umehara ◽  
Haruka Miyagawa ◽  
...  

Fish yields of Ruditapes philippinarum have been decreased and the resources have not yet recovered. It needs to clarify food sources of R. philippinarum, and relationship between primary and secondary production of it. The purpose on this study is to reveal transfer efficiency from primary producers to R. philippinarum and food sources of R. philippinarum. The field investigation was carried out to quantify biomass of R. philippinarum and primary producers on intertidal sand flat at Zigozen beach in Hiroshima Bay, Japan. In particular, photosynthetic rates of primary producers such as Zostera marina, Ulva sp. and microphytobenthos were determined in laboratory experiments. The carbon and nitrogen stable isotope ratios for R. philippinarum and 8 potential food sources (microphytobenthos, MPOM etc) growing in the tidal flat were also measured. In summer 2015, the primary productions of Z. marina, Ulva sp. and microphytobenthos were estimated to be 70.4 kgC/day, 43.4 kgC/day and 2.2 kgC/day, respectively. Secondary production of R. philippinarum was 0.4 kgC/day. Contribution of microphytobenthos to R. philippinarum as food source was 56-76% on the basis of those carbon and nitrogen stable isotope ratios. Transfer efficiency from microphytobenthos to R. philippinarum was estimated to be 10-14%. It was suggested that microphytobenthos might sustain the high secondary production of R. philippinarum, though the primary production of microphytobenthos was about 1/10 compared to other algae.


2018 ◽  
Vol 33 (6) ◽  
pp. 1089-1089
Author(s):  
Naoto F. Ishikawa ◽  
Hideyuki Doi ◽  
Jacques C. Finlay

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7890 ◽  
Author(s):  
Hideyuki Doi ◽  
Eisuke Kikuchi ◽  
Shigeto Takagi ◽  
Shuichi Shikano

Analysis of aquatic food webs is typically undertaken using carbon and nitrogen stable isotope composition of consumer and producer species. However, the trophic consequences of spatio-temporal variation in the isotope composition of consumers have not been well evaluated. Lake Katanuma, Japan, is highly acidic and has only one dominant species of benthic alga and one planktonic microalga, making it a prime system for studying trophic relationships between primary consumers and producers. In this simple lake food web, we conducted a field survey to evaluate spatial and temporal variation in the carbon and nitrogen stable isotope composition of a chironomid larvae in association with a single benthic and planktonic alga. We found a significant correlation between carbon stable isotope ratios of the chironomid larvae and the benthic diatom species in the lake. Thus, chironomid larvae may represent a reliable isotopic baseline for estimating isotope values in benthic diatoms. However, although the correlation held in shallow water, at four m depths, there was no significant relationship between the isotope ratios of chironomids and benthic diatoms, probably because deep-water larvae spend part of their life cycle migrating from the lake shore to deeper water. The differing isotope ratios of deeper chironomid tissues likely reflect the feeding history of individuals during this migration.


Sign in / Sign up

Export Citation Format

Share Document