Evidence of pteridophyte–arthropod interactions in the fossil record

Author(s):  
A. C. Scott ◽  
W. G. Chaloner ◽  
S. Paterson

SynopsisThe past decade has seen the emergence of significant fossil evidence of a history of pterodophytearthropod interaction extending back to the Devonian period. Such fossils include plant tissue showing lesions, bites and borings with associated features implicating arthropods as causal agents. Gut contents of Carboniferous arthropods, which include lycopod xylem elements and spores, are a tangible demonstration of phytophagy. Pteridophyte spores in fossil droppings (coprolites) indicate the prevalence of arthropod spore-eating in the Palaeozoic. This may have had compensations for the source plant and evidently represented the start of the co–evolution which culminated in the elaborate adaptations shown by flowering plants and their insect pollination vectors.

Author(s):  
Paul B. Wignall

Despite the less-than-perfect nature of the fossil record, it still provides a unique window on the history of life, and reveals that there have been dramatic fluctuations in extinction intensities since complex life evolved around 600 million years ago. ‘Extinction in the past’ considers Jack Sepkoski’s database compiled in the 1980s, and his series of highly informative charts showing both diversity and extinction rates since the start of the Cambrian Period 541 million years ago. The calculation of extinction rates and the improved dating of extinction events are discussed, along with the extinction trends that can be observed. Fossils also provide valuable evidence on the nature of selection during extinction.


Paleobiology ◽  
1996 ◽  
Vol 22 (3) ◽  
pp. 329-338 ◽  
Author(s):  
R. A. Fensome ◽  
R. A. MacRae ◽  
J. M. Moldowan ◽  
F. J. R. Taylor ◽  
G. L. Williams

Dinoflagellates are a major component of the marine microplankton and, from fossil evidence, appear to have been so for the past 200 million years. In contrast, the pre-Triassic record contains only equivocal occurrences of dinoflagellates, despite the fact that comparative ultrastructural and molecular phylogenetic evidence indicates a Precambrian origin for the lineage. Thus, it has often been assumed that the dearth of Paleozoic fossil dinoflagellates was due to a lack of preservation or recognition and that the relatively sudden appearance of dinoflagellates in the Mesozoic is an artifact of the record. However, new evidence from a detailed analysis of the fossil record and from the biogeochemical record indicates that dinoflagellates did indeed undergo a major evolutionary radiation in the early Mesozoic.


2016 ◽  
Vol 371 (1699) ◽  
pp. 20160020 ◽  
Author(s):  
Philip C. J. Donoghue ◽  
Ziheng Yang

The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’.


Author(s):  
B. A. Thomas

SynopsisThe success of plants which lived in the past should be assessed differently from that of living plants as time is an additional important factor. Success may therefore be judged in one period of time or throughout the whole geological history of the plants.Limitations of the fossil record through plant fragmentation, lack of preservation and incomplete preservation severely restrict the amount of information available. However, accepting these problems, there are four major ways in which plants may be judged: long term survival, repeated specialisation, dominance and adaptability. Examples are given of pteridophytes that exhibit success in these four ways.


2010 ◽  
Vol 84 (5) ◽  
pp. 935-954 ◽  
Author(s):  
Isaac S. Winkler ◽  
Conrad C. Labandeira ◽  
Torsten Wappler ◽  
Peter Wilf

Fossilized leaf mines and other traces of phytophagous insects provide a unique window into ecological and evolutionary associations of the past. Leaf-mining flies (Diptera: Agromyzidae) are an important component of the recent leaf-mining fauna, but their fossil record is sparse compared to other mining insect lineages; many putative agromyzid body fossils and traces are dubiously assigned. Agromyzid leaf mines often can be distinguished from those of other insects by the presence of an intermittent, fluidized frass trail that may alternate between the sides of the mine. Here, we describe two new Paleogene leaf mine fossils, Phytomyzites biliapchaensis Winkler, Labandeira and Wilf n. sp. from the early Paleocene of southeastern Montana, USA, occurring in leaves of Platanus raynoldsii (Platanaceae); and Phytomyzites schaarschmidti Wappler n. sp., from the middle Eocene of Messel, Germany, occurring in leaves of Toddalia ovata (Rutaceae). These fossils both exhibit frass trails indicative of an agromyzid origin, and P. biliapchaensis also exhibits associated stereotypical marks identical to damage caused by feeding punctures of extant adult female Agromyzidae prior to oviposition. Phytomyzites biliapchaensis represents the earliest confirmed record of Agromyzidae, and one of the earliest records for the large dipteran clade Schizophora. Plant hosts of both species belong to genera that are no longer hosts of leaf-mining Agromyzidae, suggesting a complex and dynamic history of early host-plant associations and, for the early Paleocene example, an evolutionary, possibly opportunistic colonization in the midst of the ecological chaos following the end-Cretaceous event in North America.


1996 ◽  
Vol 2 ◽  
pp. 67-68
Author(s):  
Judy Scotchmoor

Learning from the Fossil Record is a title carefully chosen for it conveys multiple concepts. Paleontologists, geologists, biologists, and others use the fossil record to learn about the past history of the Earth. Using this knowledge, we have gained an understanding of geologic processes that continue today, biodiversity past and present, species origination and extinction, past and present climates, oceans, and atmospheres among others. In fact, we have been able to piece together the fascinating story of our dynamic Earth for the past 3.5 billion years.


2011 ◽  
Vol 8 (1) ◽  
pp. 112-114 ◽  
Author(s):  
Andrew B. Smith ◽  
Paul M. Barrett

The history of life on this planet is gleaned from analysing how fossils are distributed through time and space. While these patterns are now rather securely known, at least for well-studied parts of the world, their interpretation remains far from simple. Fossils preserve only partial data from which to reconstruct their biology and the geological record is incomplete and biased, so that taxonomic ranges and palaeocommunity structure are imperfectly known. To better understand the often highly complex deep-time processes that gave rise to the empirical fossil record, palaeontologists have turned to modelling the past. Here, we summarize a series of 11 papers that showcase where modelling the past is being applied to advance our understanding across a wide spectrum of current palaeontological endeavours.


2019 ◽  
Vol 15 (11) ◽  
pp. 20190657 ◽  
Author(s):  
S. Augusta Maccracken ◽  
Ian M. Miller ◽  
Conrad C. Labandeira

Mite houses, or acarodomatia, are found on the leaves of over 2000 living species of flowering plants today. These structures facilitate tri-trophic interactions between the host plant, its fungi or herbivore adversaries, and fungivorous or predaceous mites by providing shelter for the mite consumers. Previously, the oldest acarodomatia were described on a Cenozoic Era fossil leaf dating to 49 Myr in age. Here, we report the first occurrence of Mesozoic Era acarodomatia in the fossil record from leaves discovered in the Upper Cretaceous Kaiparowits Formation (76.6–74.5 Ma) in southern UT, USA. This discovery extends the origin of acarodomatia by greater than 25 Myr, and the antiquity of this plant–mite mutualism provides important constraints for the evolutionary history of acarodomatia on angiosperms.


2020 ◽  
Vol 191 ◽  
pp. 23
Author(s):  
Vincent Girard ◽  
Simona Saint Martin ◽  
Eric Buffetaut ◽  
Jean-Paul Saint Martin ◽  
Didier Néraudeau ◽  
...  

The origin of the diatoms still remains enigmatic. Their fossil record is scarce until the Late Cretaceous and great divergences exist between molecular data and the earliest fossil evidence. While molecular data indicate an origin during the Triassic or Early Jurassic, early fossil evidence is only from the Late Jurassic-Early Cretaceous. The discovery of diatoms in French mid-Cretaceous amber by the end of the 2000s already suggested a potential bias in the diatom fossil record as it made older many diatom lineages, the record of which hitherto began at the end of the Cretaceous. The Jurassic/Early Cretaceous fossil record of diatoms is extremely sparse and any new occurrence is important for retracing the evolutionary, palaeogeographical and palaeoenvironmental history of diatoms. Thai amber has yielded a new diatom specimen that has been attributed to the genus Hemiaulus. Fossil assemblages and sedimentological data indicate that Thai amber and its Hemiaulus specimen are Late Jurassic in age. This discovery represents the oldest hitherto known specimen of Hemiaulus and so extends the fossil record of the bipolar diatoms and of the genus Hemiaulus by several dozens of millions of years and brings closer the fossil evidence and molecular data (that estimated an origin of the bipolar diatoms about 150 Ma ago). It reinforces the hypothesis of a pre-Cretaceous fossil diatom records and also supports an origin of the diatoms in shallow coastal environments.


2017 ◽  
Vol 38 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Andrea Villa ◽  
Emanuel Tschopp ◽  
Georgios L. Georgalis ◽  
Massimo Delfino

The capability of palaeontologists to identify fossil remains of a particular group of vertebrates strongly depends on the knowledge they have of its comparative osteology and on the actual presence of diagnostic differences among the considered taxa. This could have a relevant influence on the study of palaeodiversity, since a low recognisability causes a loss of data when trying to reconstruct the history of taxa that lived on Earth in the past. Currently, more than 6000 extant species of lizards and worm lizards are known, and new ones continue to be discovered, mainly based on molecular data. But are we able to recognise this high diversity using osteology? As far as European taxa are concerned, the osteological recognisability of non-snake squamates is very low: only 31% of the extant European taxa can be identified based on their skeletal morphology. This is balanced partially by the fact that most recognisable taxa have been actually recognised in the fossil record, suggesting that the lost data are mainly due to the scarce knowledge of the comparative osteology of these reptiles and less influenced by other biases, such as taphonomic or collection biases. In this context, specimen-level phylogenetic analysis has proved to be a useful tool to identify diagnostic combinations of osteological features, at least for lacertid species, as evidenced by a case study focused on the genusLacerta.


Sign in / Sign up

Export Citation Format

Share Document