scholarly journals Thai amber: insights into early diatom history?

2020 ◽  
Vol 191 ◽  
pp. 23
Author(s):  
Vincent Girard ◽  
Simona Saint Martin ◽  
Eric Buffetaut ◽  
Jean-Paul Saint Martin ◽  
Didier Néraudeau ◽  
...  

The origin of the diatoms still remains enigmatic. Their fossil record is scarce until the Late Cretaceous and great divergences exist between molecular data and the earliest fossil evidence. While molecular data indicate an origin during the Triassic or Early Jurassic, early fossil evidence is only from the Late Jurassic-Early Cretaceous. The discovery of diatoms in French mid-Cretaceous amber by the end of the 2000s already suggested a potential bias in the diatom fossil record as it made older many diatom lineages, the record of which hitherto began at the end of the Cretaceous. The Jurassic/Early Cretaceous fossil record of diatoms is extremely sparse and any new occurrence is important for retracing the evolutionary, palaeogeographical and palaeoenvironmental history of diatoms. Thai amber has yielded a new diatom specimen that has been attributed to the genus Hemiaulus. Fossil assemblages and sedimentological data indicate that Thai amber and its Hemiaulus specimen are Late Jurassic in age. This discovery represents the oldest hitherto known specimen of Hemiaulus and so extends the fossil record of the bipolar diatoms and of the genus Hemiaulus by several dozens of millions of years and brings closer the fossil evidence and molecular data (that estimated an origin of the bipolar diatoms about 150 Ma ago). It reinforces the hypothesis of a pre-Cretaceous fossil diatom records and also supports an origin of the diatoms in shallow coastal environments.

2021 ◽  
Vol 62 (9) ◽  
pp. 1006-1020
Author(s):  
F.I. Zhimulev ◽  
E.V. Vetrov ◽  
I.S. Novikov ◽  
G. Van Ranst ◽  
S. Nachtergaele ◽  
...  

Abstract —The Kolyvan’–Tomsk folded zone (KTFZ) is a late Permian collisional orogen in the northwestern section of the Central Asian Orogenic Belt. The Mesozoic history of the KTFZ area includes Late Triassic–Early Jurassic and Late Jurassic–Early Cretaceous orogenic events. The earlier event produced narrow deep half-ramp basins filled with Early–Middle Jurassic molasse south of the KTFZ, and the later activity rejuvenated the Tomsk thrust fault, whereby the KTFZ Paleozoic rocks were thrust over the Early–Middle Jurassic basin sediments. The Mesozoic orogenic events induced erosion and the ensuing exposure of granitoids (Barlak complex) that were emplaced in a within-plate context after the Permian collisional orogeny. Both events were most likely associated with ocean closure, i.e., the Paleothetys Ocean in the Late Triassic–Early Jurassic and the Mongol–Okhotsk Ocean in the Late Jurassic–Early Cretaceous. The apatite fission track (AFT) ages of granitoids from the Ob’ complex in the KTFZ range between ~120 and 100 Ma (the Aptian and the Albian). The rocks with Early Cretaceous AFT ages were exhumed as a result of denudation and peneplanation of the Early Cretaceous orogeny, which produced a vast Late Cretaceous–Paleogene planation surface. The tectonic pattern of the two orogenic events, although being different in details, generally inherited the late Paleozoic primary collisional structure of the Kolyvan’–Tomsk zone.


2014 ◽  
Vol 88 (6) ◽  
pp. 1257-1287 ◽  
Author(s):  
Walter G. Joyce ◽  
Juliana Sterli ◽  
Sandra D. Chapman

The fossil record of solemydid turtles is primarily based on isolated fragments collected from Late Jurassic to Late Cretaceous sediments throughout North America and Europe and little is therefore known about the morphology and evolutionary history of the group. We here provide a detailed description of the only known near-complete solemydid skeleton, which was collected from the Lower Cretaceous (Aptian–Albian) Antlers Formation of Texas during the mid-twentieth century, but essentially remains undescribed to date. Though comparison is limited, the skeleton is referred toNaomichelys speciosa, which is based on an isolated entoplastron from the Lower Cretaceous (Aptian–Albian) Kootenai (Cloverly) Formation of Montana. The absence of temporal emarginations, contribution of the jugals to the orbits, and a clear subdivision of the middle and inner cavities, and the presence of elongate postorbitals, posteriorly expanded squamosals, a triangular fossa at the posterior margin of the squamosals, an additional pair of tubercula basioccipitale that is formed by the pterygoids, foramina pro ramo nervi vidiani (VII) that are visible in ventral view, shell sculpturing consisting of high tubercles, a large entoplastron with entoplastral scute, V-shaped anterior peripherals, and limb osteoderms with tubercular sculpture diagnoseNaomichelys speciosaas a representative of Solemydidae. The full visibility of the parabasisphenoid complex in ventral view, the presence of an expanded symphyseal shelf, and the unusual ventromedial folding of the coronoid process are the primary characteristics that distinguishNaomichelys speciosafrom the near-coeval European taxonHelochelydra nopcsai.


1985 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A. El-Arnauti ◽  
M. Shelmani

Abstract. INTRODUCTIONThe material which forms the basis of this project was obtained from a number of wells in the study area in Cyrenaica, the northeastern part of Libya. The study area, which is located between latitudes 25° and 33°N and between longitudes 20° and 25° E, covers some 365,750 square kilometres (see Fig. 1). The area extends from the Egyptian border in the east to the eastern flank of the Sirte Basin in the west and is part of the stable Saharan Shield.Since Precambrian time several phases of epeirogenic movements have produced troughs, horst blocks or platforms which have in turn influenced the subsequent sedimentological history of the area. In the southern and southeastern part of the study area, the basement is unconformably overlain by a thick, partially marine Palaeozoic sequence which is in turn unconformably overlain by sediments of Jurassic or younger age. The basement in the central and southwestern parts of the area is unconformably overlain by non-marine clastics of Late Jurassic and Early Cretaceous age or by marine sediments of Late Cretaceous and Tertiary age. In the eastern and northeastern section the basement is overlain by a wedge of eastward thickening marine Palaeozoic rocks which are in turn unconformably overlain by marine sediments of Late Cretaceous and Tertiary age. In the most northerly part of the northeastern region of the study area, a thick paralic sequence of Triassic, Jurassic and Early Cretaceous deposits is unconformably overlain by Late Cretaceous and Tertiary sediments.PALAEOZOICRocks of Cambro-Ordovician . . .


2013 ◽  
Vol 9 (4) ◽  
pp. 20130021 ◽  
Author(s):  
Valentin Fischer ◽  
Robert M. Appleby ◽  
Darren Naish ◽  
Jeff Liston ◽  
James B. Riding ◽  
...  

Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed.


2019 ◽  
Vol 47 (1) ◽  
pp. 519-553 ◽  
Author(s):  
David W. Krause ◽  
Joseph J.W. Sertich ◽  
Patrick M. O'Connor ◽  
Kristina Curry Rogers ◽  
Raymond R. Rogers

The Mesozoic plate tectonic and paleogeographic history of Gondwana had a profound effect on the distribution of terrestrial vertebrates. As the supercontinent fragmented into a series of large landmasses (South America, Africa-Arabia, Antarctica, Australia, New Zealand, the Indian subcontinent, and Madagascar), particularly during the Late Jurassic and Cretaceous, its terrestrial vertebrates became progressively isolated, evolving into unique faunal assemblages. We focus on four clades that, during the Mesozoic, had relatively low ability for dispersal across oceanic barriers—crocodyliforms, sauropod dinosaurs, nonavian theropod dinosaurs, and mammals. Their distributions reveal patterns that are critically important in evaluating various biogeographic hypotheses, several of which have been informed by recent discoveries from the Late Cretaceous of Madagascar. We also examine the effects of lingering, intermittent connections, or reconnections, of Gondwanan landmasses with Laurasia (through the Caribbean, Mediterranean, and Himalayan regions) on the distributions of different clades. ▪ This article reviews the biogeographic history of terrestrial vertebrates from the Mesozoic of the southern supercontinent Gondwana. ▪ Relatively large, terrestrial animals—including crocodyliforms, sauropod and nonavian theropod dinosaurs, and mammals—are the focus of this review. ▪ Most patterns related to vicariance occurred during the Late Jurassic and Cretaceous, the intervals of most active Gondwanan fragmentation. ▪ Recent discoveries of vertebrates from the Late Cretaceous of Madagascar have played a key role in formulating and testing various biogeographic hypotheses.


2014 ◽  
Vol 281 (1786) ◽  
pp. 20132624 ◽  
Author(s):  
Ben Thuy ◽  
Steffen Kiel ◽  
Alfréd Dulai ◽  
Andy S. Gale ◽  
Andreas Kroh ◽  
...  

Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic.


2018 ◽  
Author(s):  
Valentin Fischer ◽  
Darren Naish ◽  
Jeff Liston ◽  
Robert M Appleby ◽  
James B Riding ◽  
...  

Cretaceous ichthyosaurs have typically been considered a small, homo- geneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline lead- ing to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate ana- lyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral mor- phology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations pro- duced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed.


2021 ◽  

Mesozoic plate convergence in SE Sundaland has been a source of debate for decades. A determination of plate convergence boundaries and timing have been explained in many publications, but not all boundaries were associated with magmatism. Through integration of both plate configurations and magmatic deposits, the basement can be accurately characterized over time and areal extents. This paper will discuss Cretaceous subductions and magmatic arc trends in SE Sundaland area with additional evidence found in JS-1 Ridge. At least three subduction trends are captured during the Mesozoic in the study area: 1) Early Jurassic – Early Cretaceous trend of Meratus, 2) Early Cretaceous trend of Bantimala and 3) Late Cretaceous trend in the southernmost study area. The Early Jurassic – Early Cretaceous subduction occurred along the South and East boundary of Sundaland (SW Borneo terrane) and passes through the Meratus area. The Early Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo and Paternoster terranes) and pass through the Bantimala area. The Late Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo, Paternoster and SE Java – South Sulawesi terranes), but is slightly shifted to the South approaching the Oligocene – Recent subduction zone. Magmatic arc trends can also be generally grouped into three periods, with each period corresponds to the subduction processes at the time. The first magmatic arc (Early Jurassic – Early Cretaceous) is present in core of SW Borneo terrane and partly produces the Schwaner Magmatism. The second Cretaceous magmatic arc (Early Cretaceous) trend is present in the SW Borneo terrane but is slightly shifted southeastward It is responsible for magmatism in North Java offshore, northern JS-1 Ridge and Meratus areas. The third magmatic arc trend is formed by Late Cretaceous volcanic rocks in Luk Ulo, the southern JS-1 Ridge and the eastern Makassar Strait areas. These all occur during the same time within the Cretaceous magmatic arc. Though a mélange rock sample has not been found in JS-1 Ridge area, there is evidence of an accretionary prism in the area as evidenced by the geometry observed on a new 3D seismic dataset. Based on the structural trend of Meratus (NNE-SSW) coupled with the regional plate boundary understanding, this suggests that both Meratus & JS-1 Ridge are part of the same suture zone between SW Borneo and Paternoster terranes. The gradual age transition observed in the JS-1 Ridge area suggests a southward shift of the magmatic arc during Early Cretaceous to Late Cretaceous times.


2006 ◽  
Vol 29 (1) ◽  
pp. 55-80
Author(s):  
Jere H Lipps

The major features of protist evolution are fraught with controversies, problems and few answers, especially in early Earth history. In general they are based on molecular data and fossil evidence that respectively provide a scaffold and details of eukaryotic phylogenetic and ecologic histories. 1. Their origin, inferred from molecular sequences, occurred very early (>;3Ga). They are a chimera of different symbiont-derived organelles, including possibly the nucleus. 2. The initial diversification of eukaryotes may have occurred early in geologic time. Six supergroups exist today, each with fossils known from the Proterozoic and Phanerozoic. 3. Sex, considered an important development, may have been inherited from bacteria. 4. Precambrian protists were largely pelagic cyst-bearing taxa, but benthic forms were probably quite diverse and abundant. 5. Protists gave rise to animals long before 600 Ma through the choanoflagellates, for which no fossil record exists. 6. Acritarchs and skeletonized protists radiated in the Cambrian (544-530 my). From then on, they radiated and became extinct at all the major events recorded in the metazoan fossil record. 7. Protists dominated major environments (shelves and reefs) starting with a significant radiation in the Ordovician, followed by extinctions and other radiations until most died out at the end of the Permian. 8. In the Mesozoic, new planktic protozoa and algae appeared and radiated in pelagic environments. 9. Modern protists are important at all trophic levels in the oceans and a huge number terrestrial, parasitic and symbiotic protists must have existed for much of geologic time as well. 10. The future of protists is likely in jeopardy, just like most reefal, benthic, and planktic metazoans. An urgent need to understand the role of protists in modern threatened oceans should be addressed soon.


1995 ◽  
Vol 69 (1) ◽  
pp. 66-84 ◽  
Author(s):  
Simon R. A. Kelly

New discoveries of trigonioid bivalves are documented from three areas in the Antartic Peninsula: the Fossil Bluff Group of Alexander Island, the Latady Formation of the Orville Coast, and the Byers Group of Livingston Island, South Shetland Islands. Eleven taxa are described, representing six genera or subgenera. The faunas are characterized by genera including Vaugonia (Vaugonia), the first Early Jurassic trigonioid recognized on the continent; Vaugonia (V.) and V. (Orthotrigonia?) in the Late Jurassic; and Iotrigonia (Iotrigonia), Myophorella (Scaphogonia), and Pterotrigonia (Pterotrigonia), which span the Jurassic–Cretaceous boundary, reaching the Berriasian stage. The following species are new: Pterotrigonia (P.) cramei n. sp., Pterotrigonia (P.) thomsoni n. sp., Vaugonia (V.) orvillensis n. sp., and V. (Orthotrigonia?) quiltyi n. sp. The faunas show affinities with those of New Zealand and southern Africa. Trigonioids characterize the shallower marine biofacies in the Jurassic of the Antarctic and reflect the principal shallowing events in the history of the region.


Sign in / Sign up

Export Citation Format

Share Document