Some infinite integrals involving Whittaker functions and generalized hypergeometric polynomials, with their applications

1969 ◽  
Vol 65 (2) ◽  
pp. 483-488 ◽  
Author(s):  
Manilal Shah

We have defined the generalized hypergeometric polynomial ((6), eqn. (2·1), p. 79) by means ofwhere δ and n are positive integers and the symbol Δ(δ, − n) represents the set of δ-parametersThe polynomial is in a generalized form which yields many known polynomials with proper choice of parameters and therefore the results are of general character.

Author(s):  
Manilal Shah

AbstractIn this paper, using a generalized hypergeometric polynomial defined bywhere Δ(m, − n) denotes the set of m-parameters:and m, n are positive integers, we have established some infinite series, transformations, integrals and expansion formulae for generalized hypergeometric polynomials. The polynomial is in a generalized form which yields many known polynomials with proper choice of parameters. Special cases have also been given.


Author(s):  
Manilal Shah

The generalized hypergeometric polynomial ((7), equation (2·1)) has been defined bywhere the symbol Δ(δ, −n) represents the set of δ-parameters:and δ, n are positive integers. The polynomial is in a generalized form which yields many known polynomials on specializing the parameters.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


1991 ◽  
Vol 43 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Tom C. Brown ◽  
Voijtech Rödl

Our main result is that if G(x1, …, xn) = 0 is a system of homogeneous equations such that for every partition of the positive integers into finitely many classes there are distinct y1,…, yn in one class such that G(y1, …, yn) = 0, then, for every partition of the positive integers into finitely many classes there are distinct Z1, …, Zn in one class such thatIn particular, we show that if the positive integers are split into r classes, then for every n ≥ 2 there are distinct positive integers x1, x1, …, xn in one class such thatWe also show that if [1, n6 − (n2 − n)2] is partitioned into two classes, then some class contains x0, x1, …, xn such that(Here, x0, x2, …, xn are not necessarily distinct.)


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.


2015 ◽  
Vol 58 (4) ◽  
pp. 858-868 ◽  
Author(s):  
Kenneth S. Williams

AbstractLet denote the Dedekind eta function. We use a recent productto- sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly ten eta quotientssuch that the Fourier coefficients c(n) vanish for all positive integers n in each of infinitely many non-overlapping arithmetic progressions. For example, we show that if we have c(n) = 0 for all n in each of the arithmetic progressions


1966 ◽  
Vol 9 (4) ◽  
pp. 515-516
Author(s):  
Paul G. Bassett

Let n be an arbitrary but fixed positive integer. Let Tn be the set of all monotone - increasing n-tuples of positive integers:1Define2In this note we prove that ϕ is a 1–1 mapping from Tn onto {1, 2, 3,…}.


1949 ◽  
Vol 8 (3) ◽  
pp. 126-127 ◽  
Author(s):  
R. S. Varma

Recently I have given a generalisation of the Laplace integralin the formwhere Wk, m (x) stands for Whittaker Functions.


1961 ◽  
Vol 12 (3) ◽  
pp. 133-138 ◽  
Author(s):  
L. Carlitz

1. Guinand (2) has obtained finite identities of the typewhere m, n, N are positive integers and eitherorwhere γ is Euler's constant and the notation ∑′ indicates that when x is integral the term r = x is multiplied by ½. Clearly there is no loss of generality in taking N = 1 in (1.1).


Sign in / Sign up

Export Citation Format

Share Document