A diophantine problem on groups. III

Author(s):  
R. C. Baker

AbstractThe following generalization of a theorem of Weyl appeared in part I of this series of papers. Let G be a locally compact Abelian group with dual group ĝ. Let be a sequence in ĝ, not too slowly growing in a certain precise sense. Then, provided ĝ has ‘not too many’ elements of finite order, the sequencesare uniformly distributed on the circle, for almost all x in G.

1987 ◽  
Vol 39 (1) ◽  
pp. 123-148 ◽  
Author(s):  
Maria L. Torres De Squire

Throughout the whole paper G will be a locally compact abelian group with Haar measure m and dual group Ĝ. The difference of two sets A and B will be denoted by A ∼ B, i.e.,For a function f on G and s ∊ G, the functions f′ and fs will be defined by


1973 ◽  
Vol 9 (1) ◽  
pp. 73-82 ◽  
Author(s):  
U.B. Tewari ◽  
A.K. Gupta

Let G be a locally compact abelian group and Ĝ be its dual group. For 1 ≤ p < ∞, let Ap (G) denote the set of all those functions in L1(G) whose Fourier transforms belong to Lp (Ĝ). Let M(Ap (G)) denote the set of all functions φ belonging to L∞(Ĝ) such that is Fourier transform of an L1-function on G whenever f belongs to Ap (G). For 1 ≤ p < q < ∞, we prove that Ap (G) Aq(G) provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and 1 ≤ p ≤ 4 then lp (Ĝ) M(Ap(G)), and if p > 4 then there exists ψ є lp (Ĝ) such that ψ does not belong to M(Ap (G)).


1990 ◽  
Vol 42 (1) ◽  
pp. 109-125
Author(s):  
Nakhlé Asmar

(1.1) The conjugate function on locally compact abelian groups. Let G be a locally compact abelian group with character group Ĝ. Let μ denote a Haar measure on G such that μ(G) = 1 if G is compact. (Unless stated otherwise, all the measures referred to below are Haar measures on the underlying groups.) Suppose that Ĝ contains a measurable order P: P + P ⊆P; PU(-P)= Ĝ; and P⋂(—P) =﹛0﹜. For ƒ in ℒ2(G), the conjugate function of f (with respect to the order P) is the function whose Fourier transform satisfies the identity for almost all χ in Ĝ, where sgnP(χ)= 0, 1, or —1, according as χ =0, χ ∈ P\\﹛0﹜, or χ ∈ (—P)\﹛0﹜.


1959 ◽  
Vol 11 (4) ◽  
pp. 195-206 ◽  
Author(s):  
J. H. Williamson

Let G be a locally compact Abelian group, and the set of bounded complex (regular countably-additive Borel) measures on G. It is well known that becomes a Banach space if the norm is defined bythe supremum being over all finite sets of disjoint Borel subsets of G.


2003 ◽  
Vol 68 (2) ◽  
pp. 345-350
Author(s):  
R. Nair

Let S be a semigroup contained in a locally compact Abelian group G. Let Ĝ denote the Bohr compactification of G. We say that a sequence contained in S is Hartman uniform distributed on G iffor any character χ in Ĝ. Suppose that (Tg)g∈s is a semigroup of measurable measure preserving transformations of a probability space (X, β, μ) and B is an element of the σ-algebra β of positive μ measure. For a map T: X → X and a set A ⊆ X let T−1A denote {x ∈ X: Tx ∈ A}. In an earlier paper, the author showed that if k is Hartman uniform distributed thenIn this paper we show that ≥ cannot be replaced by =. A more detailed discussion of this situation ensues.


1966 ◽  
Vol 6 (1) ◽  
pp. 65-75 ◽  
Author(s):  
R. E. Edwards

SummaryLet G denote a Hausdorff locally compact Abelian group which is nondiscrete and second countable. The main results (Theorems (2.2) and (2.3)) assert that, for any closed subset E of G there exists a pseudomeasure s on G whose singular support is E; and that if no portion of E is a Helson set, then such an s may be chosen having its support equal to E. There follow (Corollaries (2.2.4) and (2.3.2)) sufficient conditions for the relations to hold for some pseudomeasure s, E and F being given closed subsets of G. These results are analogues and refinements of a theorem of Pollard [4] for the case G = R, which asserts the existence of a function in L∞(R) whose spectrum coincides with any preassigned closed subset of R.


1990 ◽  
Vol 108 (3) ◽  
pp. 527-538 ◽  
Author(s):  
M. Filali

In recent years, the Stone-Čech compactification of certain semigroups (e.g. discrete semigroups) has been an interesting semigroup compactification (i.e. a compact right semitopological semigroup which contains a dense continuous homomorphic image of the given semigroup) to study, because an Arens-type product can be introduced. If G is a non-compact and non-discrete locally compact abelian group, then it is not possible to introduce such a product into the Stone-Čech compactification βG of G (see [1]). However, let UC(G) be the Banach algebra of bounded uniformly continuous complex functions on G, and let UG be the spectrum of UC(G) with the Gelfand topology. If f∈ UC(G), then the functions f and fy defined on G byare also in UC(G).


Author(s):  
Chang-Pao Chen

AbstractLet G denote any locally compact abelian group with the dual group Γ. We construct a new kind of subalgebra L1(G) ⊗ΓS of L1(G) from given Banach ideal S of L1(G). We show that L1(G) ⊗гS is the larger amoung all strongly character invariant homogeneous Banach algebras in S. when S contains a strongly character invariant Segal algebra on G, it is show that L1(G) ⊗гS is also the largest among all strongly character invariant Segal algebras in S. We give applications to characterizations of two kinds of subalgebras of L1(G)-strongly character invariant Segal algebras on G and Banach ideal in L1(G) which contain a strongly character invariant Segal algebra on G.


2011 ◽  
Vol 32 (2) ◽  
pp. 763-784 ◽  
Author(s):  
MARIUSZ LEMAŃCZYK ◽  
FRANÇOIS PARREAU

AbstractWe study the problem of lifting various mixing properties from a base automorphismT∈Aut(X,ℬ,μ) to skew products of the formTφ,𝒮, where φ:X→Gis a cocycle with values in a locally compact Abelian groupG, 𝒮=(Sg)g∈Gis a measurable representation ofGinAut(Y,𝒞,ν) andTφ,𝒮acts on the product space (X×Y,ℬ⊗𝒞,μ⊗ν) byIt is also shown that wheneverTis ergodic (mildly mixing, mixing) butTφ,𝒮is not ergodic (is not mildly mixing, not mixing), then, on a non-trivial factor 𝒜⊂𝒞 of 𝒮, the corresponding Rokhlin cocyclex↦Sφ(x)∣𝒜is a coboundary (a quasi-coboundary).


Sign in / Sign up

Export Citation Format

Share Document