The self-intersection formula and the ‘formule-clef’

Author(s):  
A. T. Lascu ◽  
D. Mumford ◽  
D. B. Scott

We shall consider exclusively algebraic non-singular quasi-projective irreducible varieties over an algebraically closed field. If V is such a variety will be the Chow ring of rational equivalence classes of cycles of Vand the group homomorphism defined by any proper morphism φ: V1 → V2. Alsodenotes the ring homomorphism defined by φ.

1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


1960 ◽  
Vol 12 ◽  
pp. 269-277 ◽  
Author(s):  
Marvin Marcus ◽  
Nisar A. Khan

Let A, B, and X be n-square matrices over an algebraically closed field F of characteristic 0. Let [A, B] = AB — BA and set (A, B) = [A, [A, B]]. Recently several proofs (1; 3; 5) of the following result have appeared: if det (AB) ≠ 0 and (A,B) = 0 then A-1B-1AB - I is nilpotent. In (2) McCoy determined the general form of any X satisfying1.1in the case that A has a single elementary divisor corresponding to each eigenvalue, that is, A is non-derogatory. In Theorem 1 we determine the structure of any matrix X satisfying (1.1) and also give a formula for the dimension of the linear space of all such X in terms of the degrees of the elementary divisors of A.


1964 ◽  
Vol 16 ◽  
pp. 315-320 ◽  
Author(s):  
Nisar A. Khan

Let Mn denote the space of all n-square matrices over an algebraically closed field F. For A, B ∊ Mn, letdefine the iterated commutators of A and B. Recently several research papers (1, 2, 4, and 5) have appeared on these commutators. In (1), Kato and Taussky have proved that for n = 2 the iterated commutators of A and B satisfy the linear relation


1980 ◽  
Vol 32 (6) ◽  
pp. 1423-1437 ◽  
Author(s):  
M. Faierman ◽  
I. Knowles

The objective of this paper is to extend the recent results [7, 8, 9] concerning the self-adjointness of Schrödinger-type operators with singular potentials to a more general setting. We shall be concerned here with formally symmetric elliptic differential expressions of the form1.1where x = (x1, …, xm) ∈ Rm (and m ≧ 1), i = (–1)1/2, ∂j = ∂/∂xj, and the coefficients ajk, bj and q are real-valued and measurable on Rm.The basic problem that we consider is that of deciding whether or not the formal operator defined by (1.1) determines a unique self-adjoint operator in the space L2(Rm) of (equivalence classes of) square integrable complex-valued functions on Rm.


2018 ◽  
Vol 2018 (739) ◽  
pp. 159-205
Author(s):  
Matthias Wendt

Abstract The present paper studies the group homology of the groups {\operatorname{SL}_{2}(k[C])} and {\operatorname{PGL}_{2}(k[C])} , where {C=\overline{C}\setminus\{P_{1},\dots,P_{s}\}} is a smooth affine curve over an algebraically closed field k. It is well known that these groups act on a product of trees and the quotients can be described in terms of certain equivalence classes of rank two vector bundles on the curve {\overline{C}} . There is a natural subcomplex consisting of cells with suitably non-trivial isotropy group. The paper provides explicit formulas for the equivariant homology of this “parabolic subcomplex”. These formulas also describe group homology of {\operatorname{SL}_{2}(k[C])} above degree s, generalizing a result of Suslin in the case {s=1} .


2015 ◽  
Vol 158 (3) ◽  
pp. 477-486
Author(s):  
AMIT KUBER

AbstractLet K0(Vark) denote the Grothendieck ring of k-varieties over an algebraically closed field k. Larsen and Lunts asked if two k-varieties having the same class in K0(Vark) are piecewise isomorphic. Gromov asked if a birational self-map of a k-variety can be extended to a piecewise automorphism. We show that these two questions are equivalent over any algebraically closed field. If these two questions admit a positive answer, then we prove that its underlying abelian group is a free abelian group and that the associated graded ring of the Grothendieck ring is the monoid ring $\mathbb{Z}$[$\mathfrak{B}$] where $\mathfrak{B}$ denotes the multiplicative monoid of birational equivalence classes of irreducible k-varieties.


1983 ◽  
Vol 26 (3) ◽  
pp. 271-272
Author(s):  
Pablo M. Salzberg

AbstractLet H(x) be a homogeneous polynomial in n indeterminates over an algebraically closed field K. A necesssary and sufficient condition is given for H(x) to admit a factorization of the forma, b∈ Kn, and “∘” is the usual inner product. This condition involves the linear derivatives of H(x).


2018 ◽  
Vol 235 ◽  
pp. 115-126
Author(s):  
YUICHIRO HOSHI

In this paper, we prove that the set of equivalence classes of dormant opers of rank $p-1$ over a projective smooth curve of genus ${\geqslant}2$ over an algebraically closed field of characteristic $p>0$ is of cardinality one.


1959 ◽  
Vol 11 ◽  
pp. 1-17
Author(s):  
Andrew H. Wallace

Let k be an algebraically closed field and let x1, x2, . . . , xn be indeterminates. Denote by Rn the ring k[[x1, x2, … , xn]] of power series in the xi With coefficients in the field k. Let and be two ideals in this ring. Then and will be said to be analytically equivalent if there is an automorphism T of Rn such that T() = . and will be called analytically equivalent under T.The above situation can be described geometrically as follows. The ideals and can be regarded as defining algebroid varieties V and V' in (x1, x2, … , xn)-space, and these varieties will be said to be analytically equivalent under T.The automorphism T can be expressed by means of equations of the form :where the determinant is not zero and the fi are power series of order not less than two (that is to say, containing terms of degree two or more only).


1986 ◽  
Vol 38 (3) ◽  
pp. 751-768 ◽  
Author(s):  
Mohan S. Putcha

Introduction. Let K be an algebraically closed field, G = SL(3, K) the group of 3 × 3 matrices over K of determinant 1. Let denote the monoid of all 3 × 3 matrices over K. If e is an idempotent in , thenare opposite parabolic subgroups of G in the usual sense [1], [28]. However the mapdoes not exhaust all pairs of opposite parabolic subgroups of G. Now consider the representation ϕ:G → SL(6, K) given by


Sign in / Sign up

Export Citation Format

Share Document