NoncommutativeLp-spaces with 0

1981 ◽  
Vol 89 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Kichi-Suke Saito

The noncommutative Lp-spaces (1 ≤p≤ ∞) of unbounded operators associated with a regular gauge space (a von Neumann algebra equipped with a faithful normal semifinite trace) are studied by many authors ((4), (5) and (7)). It is well-known that the noncommutativeLp-spaces (1 ≤P< ∞) are Banach spaces and the dual ofLpisLq(1 ≤p< ∞, 1/p+ 1/q= 1) by means of a Radon-Nikodym theorem.

Author(s):  
F. J. Yeadon

1. Introduction. The spaces L1 and L2 of unbounded operators associated with a regular gauge space (von Neumann algebra equipped with a faithful normal semi-finite trace) are defined by Segal(5) definitions 3.3, 3.7. The spaces Lp (1 < p < ∞, p ± 2) are defined by Dixmier(2) as the abstract completions of their bounded parts. Dixmier makes use of the Riesz convexity theorem to prove the Hölder inequality, and the uniform convexity, and hence reflexivity, of LLp (2 < p < ∞).


Author(s):  
F. J. Yeadon

In (7) we proved maximal and pointwise ergodic theorems for transformations a of a von Neumann algebra which are linear positive and norm-reducing for both the operator norm ‖ ‖∞ and the integral norm ‖ ‖1 associated with a normal trace ρ on . Here we introduce a class of Banach spaces of unbounded operators, including the Lp spaces defined in (6), in which the transformations α reduce the norm, and in which the mean ergodic theorem holds; that is the averagesconverge in norm.


Author(s):  
ANNA JENČOVÁ

Let M be a von Neumann algebra. We define the noncommutative extension of information geometry by embeddings of M into noncommutative Lp-spaces. Using the geometry of uniformly convex Banach spaces and duality of the Lp and Lq spaces for 1/p +1/q =1, we show that we can introduce the α-divergence, for α∈(-1, 1), in a similar manner as Amari in the classical case. If restricted to the positive cone, the α-divergence belongs to the class of quasi-entropies, defined by Petz.


1983 ◽  
Vol 24 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Christopher Barnett

The origin of the theory of averaging operators is explained in [1]. The theory has been developed on spaces of continuous functions that vanish at infinity by Kelley in [3] and on the Lp spaces of measure theory by Rota [5]. The motivation for this paper arose out of the latter paper. The aim of this paper is to prove a generalisation of Rota's main representation theorem (every average is a conditional expectation) in the context of a ‘non commutative integration’. This context is as follows. Let be a finite von Neumann algebra and ϕ a faithful normal finite trace on such that ϕ(I) = 1, where I is the identity of . We can construct the Banach spaces Lp (, ϕ), where 1 ≤ p < °, with norm ∥x∥p = ϕ(÷x÷p)1/p, of possibly unbounded operators affiliated with , as in [9]. We note that is dense in Lp(, ϕ). These spaces share many of the features of the Lp spaces of measure theory; indeed if is abelian then Lp(,ϕ) is isometrically isomorphic to Lp of some measure space.


1997 ◽  
Vol 08 (08) ◽  
pp. 1029-1066 ◽  
Author(s):  
Hideaki Izumi

For a von Neumann algebra ℳ and a weight φ on ℳ, we will construct a complex one-parameter family [Formula: see text] of non-commutative Lp-spaces by using Calderón's complex interpolation method. This is a simultaneous and complete extension of the construction of non-commutative Lp-spaces by H. Kosaki and M. Terp. Moreover, we will show that for each p, all the parametrized Lp-spaces are mutually isometrically isomorphic as Banach spaces via natural maps.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


2019 ◽  
Vol 169 (3) ◽  
pp. 607-622
Author(s):  
JINGHAO HUANG ◽  
GALINA LEVITINA ◽  
FEDOR SUKOCHEV

AbstractLet ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. Assume that E(0, ∞) is an M-embedded fully symmetric function space having order continuous norm and is not a superset of the set of all bounded vanishing functions on (0, ∞). In this paper, we prove that the corresponding operator space E(ℳ, τ) is also M-embedded. It extends earlier results by Werner [48, Proposition 4∙1] from the particular case of symmetric ideals of bounded operators on a separable Hilbert space to the case of symmetric spaces (consisting of possibly unbounded operators) on an arbitrary semifinite von Neumann algebra. Several applications are given, e.g., the derivation problem for noncommutative Lorentz spaces ℒp,1(ℳ, τ), 1 < p < ∞, has a positive answer.


Author(s):  
PAOLO GIBILISCO ◽  
TOMMASO ISOLA

Let [Formula: see text] be a statistical manifold of density operators, with respect to an n.s.f. trace τ on a semifinite von Neumann algebra M. If Sp is the unit sphere of the noncommutative space Lp(M, τ), using the noncommutative Amari embedding [Formula: see text], we define a noncommutative α-bundle-connection pair (ℱα, ∇α), by the pullback technique. In the commutative case we show that it coincides with the construction of nonparametric Amari–Čentsov α-connection made in Ref. 8 by Gibilisco and Pistone.


2002 ◽  
Vol 132 (1) ◽  
pp. 137-154 ◽  
Author(s):  
NARCISSE RANDRIANANTOANINA

Let [Mscr ] be a von Neumann algebra (not necessarily semi-finite). We provide a generalization of the classical Kadec–Pełczyński subsequence decomposition of bounded sequences in Lp[0, 1] to the case of the Haagerup Lp-spaces (1 [les ] p < 1 ). In particular, we prove that if { φn}∞n=1 is a bounded sequence in the predual [Mscr ]∗ of [Mscr ], then there exist a subsequence {φnk}∞k=1 of {φn}∞n=1, a decomposition φnk = yk+zk such that {yk, k [ges ] 1} is relatively weakly compact and the support projections supp(zk) ↓k 0 (or similarly mutually disjoint). As an application, we prove that every non-reflexive subspace of the dual of any given C*-algebra (or Jordan triples) contains asymptotically isometric copies of [lscr ]1 and therefore fails the fixed point property for non-expansive mappings. These generalize earlier results for the case of preduals of semi-finite von Neumann algebras.


Sign in / Sign up

Export Citation Format

Share Document