density operators
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 28)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
pp. 104889
Author(s):  
Anne Leucht ◽  
Efstathios Paparoditis ◽  
Daniel Rademacher ◽  
Theofanis Sapatinas

Author(s):  
Jader E. Brasil ◽  
Josué Knorst ◽  
Artur O. Lopes

Denote [Formula: see text] the set of complex [Formula: see text] by [Formula: see text] matrices. We will analyze here quantum channels [Formula: see text] of the following kind: given a measurable function [Formula: see text] and the measure [Formula: see text] on [Formula: see text] we define the linear operator [Formula: see text], via the expression [Formula: see text]. A recent paper by T. Benoist, M. Fraas, Y. Pautrat, and C. Pellegrini is our starting point. They considered the case where [Formula: see text] was the identity. Under some mild assumptions on the quantum channel [Formula: see text] we analyze the eigenvalue property for [Formula: see text] and we define entropy for such channel. For a fixed [Formula: see text] (the a priori measure) and for a given a Hamiltonian [Formula: see text] we present a version of the Ruelle Theorem: a variational principle of pressure (associated to such [Formula: see text]) related to an eigenvalue problem for the Ruelle operator. We introduce the concept of Gibbs channel. We also show that for a fixed [Formula: see text] (with more than one point in the support) the set of [Formula: see text] such that it is [Formula: see text]-Erg (also irreducible) for [Formula: see text] is a generic set. We describe a related process [Formula: see text], [Formula: see text], taking values on the projective space [Formula: see text] and analyze the question of the existence of invariant probabilities. We also consider an associated process [Formula: see text], [Formula: see text], with values on [Formula: see text] ([Formula: see text] is the set of density operators). Via the barycenter, we associate the invariant probability mentioned above with the density operator fixed for [Formula: see text].


2021 ◽  
Vol 7 (38) ◽  
Author(s):  
Chiara Marletto ◽  
Vlatko Vedral ◽  
Salvatore Virzì ◽  
Alessio Avella ◽  
Fabrizio Piacentini ◽  
...  
Keyword(s):  

2021 ◽  
Vol 3 (3) ◽  
pp. 482-499
Author(s):  
Roberto Leporini ◽  
Davide Pastorello

We analyze possible connections between quantum-inspired classifications and support vector machines. Quantum state discrimination and optimal quantum measurement are useful tools for classification problems. In order to use these tools, feature vectors have to be encoded in quantum states represented by density operators. Classification algorithms inspired by quantum state discrimination and implemented on classic computers have been recently proposed. We focus on the implementation of a known quantum-inspired classifier based on Helstrom state discrimination showing its connection with support vector machines and how to make the classification more efficient in terms of space and time acting on quantum encoding. In some cases, traditional methods provide better results. Moreover, we discuss the quantum-inspired nearest mean classification.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 527
Author(s):  
Mankei Tsang

By taking a Poisson limit for a sequence of rare quantum objects, I derive simple formulas for the Uhlmann fidelity, the quantum Chernoff quantity, the relative entropy, and the Helstrom information. I also present analogous formulas in classical information theory for a Poisson model. An operator called the intensity operator emerges as the central quantity in the formalism to describe Poisson states. It behaves like a density operator but is unnormalized. The formulas in terms of the intensity operators not only resemble the general formulas in terms of the density operators, but also coincide with some existing definitions of divergences between unnormalized positive-semidefinite matrices. Furthermore, I show that the effects of certain channels on Poisson states can be described by simple maps for the intensity operators.


2021 ◽  
Vol 2 (1) ◽  
pp. 395-407
Author(s):  
Malcolm H. Levitt ◽  
Christian Bengs

Abstract. The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins I=1/2, I=1, I=3/2 and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Song Cheng ◽  
Chenfeng Cao ◽  
Chao Zhang ◽  
Yongxiang Liu ◽  
Shi-Yao Hou ◽  
...  

2021 ◽  
Author(s):  
Malcolm H. Levitt ◽  
Christian Bengs

Abstract. The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region, and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins I = 1 / 2, I = 1, I = 3 / 2, and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 193
Author(s):  
Serena Di Giorgio ◽  
Paulo Mateus

Herein we study the problem of recovering a density operator from a set of compatible marginals, motivated by limitations of physical observations. Given that the set of compatible density operators is not singular, we adopt Jaynes’ principle and wish to characterize a compatible density operator with maximum entropy. We first show that comparing the entropy of compatible density operators is complete for the quantum computational complexity class QSZK, even for the simplest case of 3-chains. Then, we focus on the particular case of quantum Markov chains and trees and establish that for these cases, there exists a procedure polynomial in the number of subsystems that constructs the maximum entropy compatible density operator. Moreover, we extend the Chow–Liu algorithm to the same subclass of quantum states.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 131
Author(s):  
Peter Adam ◽  
Vladimir A. Andreev ◽  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko ◽  
Matyas Mechler

We review the method of quantizers and dequantizers to construct an invertible map of the density operators onto functions including probability distributions and discuss in detail examples of qubit and qutrit states. The biphoton states existing in the process of parametric down-conversion are studied in the probability representation of quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document