Appendix

Author(s):  
N. Spaltenstein

The notations and the references are the same as in the article by Alvis and Lusztig (0).For a finite group H let H^ be the set of isomorphism classes of irreducible complex representations of H. Let |θ| denote the degree of θ∈H^

2016 ◽  
Vol 68 (2) ◽  
pp. 258-279 ◽  
Author(s):  
Lucas Calixto ◽  
Adriano Moura ◽  
Alistair Savage

AbstractAn equivariant map queer Lie superalgebra is the Lie superalgebra of regular maps from an algebraic variety (or scheme) X to a queer Lie superalgebra q that are equivariant with respect to the action of a finite group Γ acting on X and q. In this paper, we classify all irreducible finite-dimensional representations of the equivariant map queer Lie superalgebras under the assumption that Γ is abelian and acts freely on X. We show that such representations are parameterized by a certain set of Γ-equivariant finitely supported maps from X to the set of isomorphism classes of irreducible finite-dimensional representations of q. In the special case where X is the torus, we obtain a classification of the irreducible finite-dimensional representations of the twisted loop queer superalgebra.


2012 ◽  
Vol 22 (06) ◽  
pp. 1250051 ◽  
Author(s):  
B. AKBARI ◽  
A. R. MOGHADDAMFAR

Let M be a finite group and D (M) be the degree pattern of M. Denote by h OD (M) the number of isomorphism classes of finite groups G with the same order and degree pattern as M. A finite group M is called k-fold OD-characterizable if h OD (M) = k. Usually, a 1-fold OD-characterizable group is simply called OD-characterizable. The purpose of this article is twofold. First, it provides some information on the structure of a group from its degree pattern. Second, it proves that the projective special linear groups L4(4), L4(8), L4(9), L4(11), L4(13), L4(16), L4(17) are OD-characterizable.


1970 ◽  
Vol 3 (1) ◽  
pp. 73-74
Author(s):  
S. B. Conlon ◽  
W. D. Wallis

Let G be a finite group and F a complete local noetherian commutative ring with residue field of characteristic p # 0. Let A(G) denote the representation algebra of G with respect to F. This is a linear algebra over the complex field whose basis elements are the isomorphism-classes of indecomposable finitely generated FG-representation modules, with addition and multiplication induced by direct sum and tensor product respectively. The two authors have separately found decompositions of A(G) as direct sums of subalgebras. In this note we show that the decompositions in one case have a common refinement given in the other's paper.


1971 ◽  
Vol 69 (1) ◽  
pp. 163-166 ◽  
Author(s):  
John Santa Pietro

Let p be an odd prime and G = HB be a semi-direct product where H is a cyclic, p-Sylow subgroup and B is finite Abelian. If K is a field of characteristic p the isomorphism classes of KG-modules relative to direct sum and tensor product generate a ring a(G) called the representation ring of G over K. If K is algebraically closed it is shown in (4) that there is a ring isomorphism a(G) ≃ a(HB2)⊗a(B1) where B1 is the kernel of the action of B on H and B2 = B/B1.> 2, Aut (H) is cyclic thus HB2 is metacyclic. The study of the multiplicative structure of a(G) is thus reduced to that of the known rings a(B1) and a(HB2) (see (3)).


2002 ◽  
Vol 67 (3) ◽  
pp. 1126-1140 ◽  
Author(s):  
A. Marcja ◽  
M. Prest ◽  
C. Toffalori

For every ring S with identity, the (right) Ziegler spectrum of S, Zgs, is the set of (isomorphism classes of) indecomposable pure injective (right) S-modules. The Ziegler topology equips Zgs with the structure of a topological space. A typical basic open set in this topology is of the formwhere φ and ψ are pp-formulas (with at most one free variable) in the first order language Ls for S-modules; let [φ/ψ] denote the closed set Zgs - (φ/ψ). There is an alternative way to introduce the Ziegler topology on Zgs. For every choice of two f.p. (finitely presented) S-modules A, B and an S-module homomorphism f: A → B, consider the set (f) of the points N in Zgs such that some S-homomorphism h: A → N does not factor through f. Take (f) as a basic open set. The resulting topology on Zgs is, again, the Ziegler topology.The algebraic and model-theoretic relevance of the Ziegler topology is discussed in [Z], [P] and in many subsequent papers, including [P1], [P2] and [P3], for instance. Here we are interested in the Ziegler spectrum ZgRG of a group ring RG, where R is a Dedekind domain of characteristic 0 (for example R could be the ring Z of integers) and G is a finite group. In particular we deal with the R-torsionfree points of ZgRG.The main motivation for this is the study of RG-lattices (i.e., finitely generated R-torsionfree RG-modules).


2019 ◽  
Vol 18 (01) ◽  
pp. 1950001
Author(s):  
Sara Pinter ◽  
Virgínia Rodrigues

Let [Formula: see text] be a finite group acting on a fusion category [Formula: see text] and let [Formula: see text] be a subgroup of [Formula: see text]. Let [Formula: see text] be a semisimple indecomposable module category over [Formula: see text]. Considering [Formula: see text] a simple object in [Formula: see text] and [Formula: see text] the stabilizer (or inertia) subgroup of [Formula: see text], we establish a bijective correspondence between isomorphism classes of simple objects in equivariantizations [Formula: see text] and [Formula: see text], where such simple objects contain [Formula: see text] as a direct summand. Also, as an application to projective representations of [Formula: see text], we relate isomorphism classes of simple objects in [Formula: see text] with irreducible projective representations of [Formula: see text].


Author(s):  
YANJUN LIU ◽  
WOLFGANG WILLEMS

Abstract Similarly to the Frobenius–Schur indicator of irreducible characters, we consider higher Frobenius–Schur indicators $\nu _{p^n}(\chi ) = |G|^{-1} \sum _{g \in G} \chi (g^{p^n})$ for primes p and $n \in \mathbb {N}$ , where G is a finite group and $\chi $ is a generalised character of G. These invariants give answers to interesting questions in representation theory. In particular, we give several characterisations of groups via higher Frobenius–Schur indicators.


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


Sign in / Sign up

Export Citation Format

Share Document