Characterizations of r-potent matrices

1984 ◽  
Vol 96 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Joseph P. McCloskey

A matrix A is said to be tripotent whenever A3 = A. The study of tripotent matrices is of statistical interest since if the n × 1 real random vector X follows an N(0, I) distribution and A is a symmetric matrix then the real quadratic form X′AX is distributed as the difference of two independently distributed X2 variates if and only if A3 = A. In fact, a necessary and sufficient condition that A is tripotent is that there exist two idempotent matrices B and C such that A = B – C, and BC = 0. Using properties of diagonalizable matrices, we will prove several algebraic characterizations of r-potent matrices that extend the known results for tripotent matrices. Our first result will be to obtain an analogous decomposition for an arbitrary r-potent matrix.

2019 ◽  
Vol 7 (1) ◽  
pp. 257-262
Author(s):  
Kenji Toyonaga

Abstract Given a combinatorially symmetric matrix A whose graph is a tree T and its eigenvalues, edges in T can be classified in four categories, based upon the change in geometric multiplicity of a particular eigenvalue, when the edge is removed. We investigate a necessary and sufficient condition for each classification of edges. We have similar results as the case for real symmetric matrices whose graph is a tree. We show that a g-2-Parter edge, a g-Parter edge and a g-downer edge are located separately from each other in a tree, and there is a g-neutral edge between them. Furthermore, we show that the distance between a g-downer edge and a g-2-Parter edge or a g-Parter edge is at least 2 in a tree. Lastly we give a combinatorially symmetric matrix whose graph contains all types of edges.


1990 ◽  
Vol 42 (2) ◽  
pp. 315-341 ◽  
Author(s):  
Stéphane Louboutin

Frobenius-Rabinowitsch's theorem provides us with a necessary and sufficient condition for the class-number of a complex quadratic field with negative discriminant D to be one in terms of the primality of the values taken by the quadratic polynomial with discriminant Don consecutive integers (See [1], [7]). M. D. Hendy extended Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the class-number of a complex quadratic field with discriminant D to be two in terms of the primality of the values taken by the quadratic polynomials and with discriminant D (see [2], [7]).


2013 ◽  
Vol 444-445 ◽  
pp. 625-627
Author(s):  
Kan Ming Wang ◽  
Zhi Bing Liu ◽  
Xu Yun Fei

In this paper we present a special kind of real symmetric matrices: the real symmetric doubly arrow matrices. That is, matrices which look like two arrow matrices, forward and backward, with heads against each other at the station, . We study a kind of inverse eigenvalue problem and give a necessary and sufficient condition for the existence of such matrices.


2015 ◽  
Vol 100 (2) ◽  
pp. 182-191 ◽  
Author(s):  
BUMKYU CHO

In terms of class field theory we give a necessary and sufficient condition for an integer to be representable by the quadratic form $x^{2}+xy+ny^{2}$ ($n\in \mathbb{N}$ arbitrary) under extra conditions $x\equiv 1\;\text{mod}\;m$, $y\equiv 0\;\text{mod}\;m$ on the variables. We also give some examples where their extended ring class numbers are less than or equal to $3$.


Author(s):  
M. H. Pearl

The notion of the inverse of a matrix with entries from the real or complex fields was generalized by Moore (6, 7) in 1920 to include all rectangular (finite dimensional) matrices. In 1951, Bjerhammar (2, 3) rediscovered the generalized inverse for rectangular matrices of maximal rank. In 1955, Penrose (8, 9) independently rediscovered the generalized inverse for arbitrary real or complex rectangular matrices. Recently, Arghiriade (1) has given a set of necessary and sufficient conditions that a matrix commute with its generalized inverse. These conditions involve the existence of certain submatrices and can be expressed using the notion of EPr matrices introduced in 1950 by Schwerdtfeger (10). The main purpose of this paper is to prove the following theorem:Theorem 2. A necessary and sufficient condition that the generalized inverse of the matrix A (denoted by A+) commute with A is that A+ can be expressed as a polynomial in A with scalar coefficients.


2018 ◽  
Vol 68 (1) ◽  
pp. 173-180
Author(s):  
Renata Wiertelak

Abstract In this paper will be considered density-like points and density-like topology in the family of Lebesgue measurable subsets of real numbers connected with a sequence 𝓙= {Jn}n∈ℕ of closed intervals tending to zero. The main result concerns necessary and sufficient condition for inclusion between that defined topologies.


1994 ◽  
Vol 37 (1) ◽  
pp. 54-65
Author(s):  
István Gyori ◽  
Janos Turi

AbstractIn this paper, extending the results in [ 1 ], we establish a necessary and sufficient condition for oscillation in a large class of singular (i.e., the difference operator is nonatomic) neutral equations.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Risong Li ◽  
Tianxiu Lu

In this paper, we study some chaotic properties of s-dimensional dynamical system of the form Ψa1,a2,…,as=gsas,g1a1,…,gs−1as−1, where ak∈Hk for any k∈1,2,…,s, s≥2 is an integer, and Hk is a compact subinterval of the real line ℝ=−∞,+∞ for any k∈1,2,…,s. Particularly, a necessary and sufficient condition for a cyclic permutation map Ψa1,a2,…,as=gsas,g1a1,…,gs−1as−1 to be LY-chaotic or h-chaotic or RT-chaotic or D-chaotic is obtained. Moreover, the LY-chaoticity, h-chaoticity, RT-chaoticity, and D-chaoticity of such a cyclic permutation map is explored. Also, we proved that the topological entropy hΨ of such a cyclic permutation map is the same as the topological entropy of each of the following maps: gj∘gj−1∘⋯∘g1l∘gs∘gs−1∘⋯∘gj+1, if j=1,…,s−1and gs∘gs−1∘⋯∘g1, and that Ψ is sensitive if and only if at least one of the coordinates maps of Ψs is sensitive.


2016 ◽  
Vol 12 (07) ◽  
pp. 1801-1811
Author(s):  
Jerzy Kaczorowski ◽  
Kazimierz Wiertelak

Let [Formula: see text] be a Dirichlet character. The main goal of this paper is to study oscillations of the difference [Formula: see text] where [Formula: see text] denotes the twisted Dedekind function. We prove that for infinitely many odd characters [Formula: see text] called “good”, we have [Formula: see text], and [Formula: see text] when [Formula: see text] is real. We give a necessary and sufficient condition for [Formula: see text] to be good, and in particular we prove that all odd primitive characters are good. We show also that there are infinitely many moduli [Formula: see text], including all prime powers [Formula: see text], for which all odd characters [Formula: see text] are good.


Sign in / Sign up

Export Citation Format

Share Document