Form rings and projective equivalence

1986 ◽  
Vol 99 (3) ◽  
pp. 447-456 ◽  
Author(s):  
Daniel Katz ◽  
L. J. Ratliff

If I and J are ideals in a Noetherian ring R, then I and J are projectively equivalent in case (Ii)a = (Jj)a for some positive integers i, j (where Ka denotes the integral closure in R of the ideal K) and the form ring F(R, I) of R with respect to I is the graded ring R/I ⊕ I/I2 ⊕ I2/I3 ⊕ …. These two concepts have played an important role in many research problems in commutative algebra, so they have been deeply studied and many of their properties have been discovered. In a recent paper [13] they were combined to show that a semi-local ring R is unmixed if and only if for every ideal J in R there exists a projectively equivalent ideal J in R such that every prime divisor of zero in F(R, J) has the same depth. It seems to us that results similar to this are interesting and potentially quite useful, so in this paper we prove several additional such theorems. Namely, it is shown that all ideals in all local rings have a projectively equivalent ideal whose form ring is fairly nice. Also, a characterization similar to the just mentioned result in [13] is given for the class of local rings whose completions have no embedded prime divisors of zero, and several analogous new characterizations are given for locally unmixed Noetherian rings. In particular, it is shown that if I is an ideal in an unmixed local ring R such that height(I) = l(I) (where l(I) denotes the analytic spread of I), then there exists a projectively equivalent ideal J in R such that Ass (F(R, J)) has exactly m elements, all minimal, where m is the number of minimal prime divisors of I (so if I is open, then F(R, J) has exactly one prime divisor of zero and is a locally unmixed Noetherian ring).

1951 ◽  
Vol 3 ◽  
pp. 23-30 ◽  
Author(s):  
Masayoshi Nagata

The concept of semi-local rings was introduced by C. Chevalley [1], which the writer has generalized in a recent paper [7] by removing the chain condition. The present paper aims mainly at the study of completions of semi-local rings. First in § 1 we investigate semi-local rings which are subdirect sums of semi-local rings, and we see in § 2 that a Noetherian semi-local ringRis complete if (and only if)R/pis complete for every minimal prime divisorpof zero ideal, together with some other properties. Further we consider in § 3 subrings of the completion of a semi-local ring. § 4 gives some supplementary remarks to [7], Chapter II, Proposition 8.


1981 ◽  
Vol 33 (2) ◽  
pp. 325-346 ◽  
Author(s):  
A. G. Heinicke

If P is a right localizable prime ideal in a right Noetherian ring R, it is known that the ring RP is right Noetherian, that its Jacobson radical is the only maximal ideal, and that RP/J(RP) is simple Artinian: in short it has several properties of the commutative local rings.In the present work we examine the properties of RP under the additional assumption that P is generated by, or is a minimal prime above, a normalizing sequence. It is shown that in such cases J(RP) satisfies the AR-property (i.e., P is classical) and that the rank of P coincides with the Krull dimension of RP. The length of the normalizing sequence is shown to be an upper bound for the rank of P, and if P is generated by a normalizing sequence x1, x2, …, xn then the rank of P equals n if and only if the P-closures of the ideals Ij generated by x1, x2, …, xj (j = 0, 1, …, n), are all distinct primes.


1986 ◽  
Vol 103 ◽  
pp. 39-66 ◽  
Author(s):  
Daniel Katz ◽  
Louis J. Ratliff

All rings in this paper are assumed to be commutative with identity, and they will generally also be Noetherian.In several recent papers the asymptotic theory of ideals in Noetherian rings has been introduced and developed. In this new theory the roles played in the standard theory by associated primes, R-sequences, classical grade, and Cohen-Macaulay rings are played by, respectively, asymptotic prime divisors, asymptotic sequences, asymptotic grade, and locally quasi-unmixed Noetherian rings. And up to the present time it has been shown that quite a few results from the standard theory have a valid analogue in the asymptotic theory, and a number of interesting and useful new results concerning the asymptotic prime divisors of an ideal in a Noetherian ring have also been proved. In fact the analogy between the two theories is so good that a very useful (but not completely valid) working guide is: results from the standard theory should have a valid analogue in the asymptotic theory. And, although asymptotic sequences are coarser than R-sequences (for example, they behave nicely when passing to R/z with z a minimal prime ideal in R), the converse of this working guide has also proved useful.


1994 ◽  
Vol 136 ◽  
pp. 133-155 ◽  
Author(s):  
Kazuhiko Kurano

Throughout this paperAis a commutative Noetherian ring of dimensiondwith the maximal ideal m and we assume that there exists a regular local ringSsuch thatAis a homomorphic image ofS, i.e.,A=S/Ifor some idealIofS. Furthermore we assume thatAis equi-dimensional, i.e., dimA= dimA/for any minimal prime idealofA. We put.


1950 ◽  
Vol 1 ◽  
pp. 63-70 ◽  
Author(s):  
Masayoshi Nagata

The concept of a local ring was introduced by Krull [2], who defined it as a Noetherian ring R (we say that a commutative ring R is Noetherian if every ideal in R has a finite basis and if R contains the identity) which has only one maximal ideal m. If the powers of m are defined as a system of neighbourhoods of zero, then R becomes a topological ring satisfying the first axiom of countability, And the notion was studied recently by C. Chevalley and I. S. Cohen. Cohen [1] proved the structure theorem for complete rings besides other properties of local rings.


Author(s):  
L. J. Ratliff

Since the foundational paper (10) by Northcott and Rees in 1954 there have been quite a few papers concerning reductions of ideals and the analytic spread of an ideal. One particular line of investigation concerning the analytic spread l(I) of an ideal I in a local ring (R, M) was begun in 1972 by Burch in (5), where it was shown that l(I) ≤ altitude R – min (grade R/In; n ≥ 1). This result was sharpened in 1980–81 by Brodmann in three papers, (2, 3, 4). Therein he showed that the sets {grade R/In; n ≥ 1} and {grade In−1/In; n ≥ 1} stabilize for all large n, and calling the stable values t and t*, respectively, it holds that t ≤ t* and l(I) ≤ altitude R – t* when I is not nilpotent. He then gave a case (involving R being quasi-unmixed) when equality holds. In 1981 in (20) Rees used two new approaches to Burch's inequality, and he proved two nice results which may both be stated as: l(I) ≤ altitude R – s(I) with equality holding when R is quasi-unmixed; here, s(I) = min {height P; P is a minimal prime divisor of (M, u) R[tI, u]}– 1 (in the first theorem), and s(I) is the length of a maximal asymptotic sequence over I (in the second theorem).


2005 ◽  
Vol 4 (3) ◽  
Author(s):  
Abhishek Banerjee

In this paper we look at the properties of modules and prime ideals in finite dimensional noetherian rings. This paper is divided into four sections. The first section deals with noetherian one-dimensional rings. Section Two deals with what we define a “zero minimum rings” and explores necessary and sufficient conditions for the property to hold. In Section Three, we come to the minimal prime ideals of a noetherian ring. In particular, we express noetherian rings with certain properties as finite direct products of noetherian rings with a unique minimal prime ideal, as an analogue to the expression of an artinian ring as a finite direct product of artinian local rings. Besides, we also consider the set of ideals I in R such that M ≠ I M for a given module M and show that a maximal element among these is prime. In Section Four, we deal with dimensions of prime ideals, Krull’s Small Dimension Theorem and generalize it (and its converse) to the case of a finite set of prime ideals. Towards the end of the paper, we also consider the sets of linear dependencies that might hold between the generators of an ideal and consider the ideals generated by the coefficients in such linear relations.


1960 ◽  
Vol 17 ◽  
pp. 161-166 ◽  
Author(s):  
Yukitoshi Hinohara

Our aim in this note is to generalize some topological results of commutative noetherian rings to non-commutative rings. As a supplemental remark of [2] we prove in § 1 that any right ideal of a complete right semi-local ring is closed, and thatfor any finitely generated right module M over a complete right semi-local ring Λ where J is the Jacobson radical of Λ.


1988 ◽  
Vol 110 ◽  
pp. 137-149 ◽  
Author(s):  
Dario Portelli ◽  
Walter Spangher

Let A be a noetherian ring and let I be an ideal of A contained in the Jacobson radical of A: Rad (A). We assume that the form ring of A with respect to the ideal I: G = Gr (A, I), is a normal integral domain. Hence A is a normal integral domain and one can ask for the links between Cl(A) and Cl(G).


1988 ◽  
Vol 30 (3) ◽  
pp. 359-367 ◽  
Author(s):  
Linda Becerra

In [4], R. P. Dilworth introduced the concept of a Noether lattice as an abstraction of the lattice of ideals of a Noetherian ring and he showed that many important properties of Noetherian rings, such as the Noether decomposition theorems, also hold for Noether lattices. It was later shown, in [1], that every Noether lattice is not the lattice of ideals of any Noetherian ring, yet many studies have successfully been undertaken to relate other concepts between Noetherian rings and Noether lattices as had been begun by Dilworth. (See [3], [5], and [6].) In this paper we undertake such a study and show that some results of M. Brodmann in [2] and L. Ratliff in [7] concerning prime divisors of large powers of a fixed element of a commutative Noetherian ring may be generalized and extended to the setting of a Noether lattice. It is shown (Theorem 2.8) that if A is an element of a Noether lattice then all large powers of A have the same prime divisors and (Corollary 3.8) included among this fixed set of primes are those primes that are prime divisors of the integral closure of Ak for some k≧l. We note that the ring proof of this latter result does not generalize directly since it uses the notion of transcendence degree which to our knowledge has no analogue in multiplicative lattices.


Sign in / Sign up

Export Citation Format

Share Document