A calculus for rational tangles: applications to DNA recombination

1990 ◽  
Vol 108 (3) ◽  
pp. 489-515 ◽  
Author(s):  
C. Ernst ◽  
D. W. Sumners

There exist naturally occurring enzymes (topoisomerases and recombinases), which, in order to mediate the vital life processes of replication, transcription, and recombination, manipulate cellular DNA in topologically interesting and non-trivial ways [24, 30]. These enzyme actions include promoting the coiling up (supercoiling) of DNA molecules, passing one strand of DNA through another via a transient enzyme-bridged break in one of the strands (a move performed by topoisomerase), and breaking a pair of strands and recombining them to different ends (a move performed by recombinase). An interesting development for topology has been the emergence of a new experimental protocol, the topological approach to enzymology [30], which directly exploits knot theory in an effort to understand enzyme action. In this protocol, one reacts artificial circular DNA substrate with purified enzyme in vitro (in the laboratory); the enzyme acts on the circular DNA, causing changes in both the euclidean geometry (supercoiling) of the molecules and in the topology (knotting and linking) of the molecules. These enzyme-caused changes are experimental observables, using gel electrophoresis to fractionate the reaction products, and rec A enhanced electron microscopy [15] to visualize directly and to determine unambiguously the DNA knots and links which result as products of an enzyme reaction. This experimental technique calls for the building of knot-theoretic models for enzyme action, in which one wishes mathematically to extract information about enzyme mechanism from the observed changes in the DNA molecules.

1986 ◽  
Vol 6 (12) ◽  
pp. 4372-4378
Author(s):  
S L Hajduk ◽  
A M Siqueira ◽  
K Vickerman

The kinetoplast DNA (kDNA) of trypanosomes and other parasitic members of the order Kinetoplastida is organized as a complex network containing thousands of catenated circular DNA molecules. We found that the kDNA of a free-living kinetoplastida, Bodo caudatus, exists as a noncatenated structure. The kDNA of B. caudatus represents about 40% of the total cellular DNA, and the major components of this DNA are large circles of 10 and 12 kilobases (kb). Our results indicate that these circles are analogous to trypanosome kDNA minicircles despite their large size and noncatenated form. The kDNA of B. caudatus also contains a minor component of 19 kb which is transcribed. The 19-kb molecules are probably analogous to the maxicircles of trypanosomes. The properties of the B. caudatus kDNA suggest that the catenated network structure of trypanosome kDNA is not required for maxicircle segregation during kinetoplast division or for the expression of the maxicircle genome.


1986 ◽  
Vol 6 (12) ◽  
pp. 4372-4378 ◽  
Author(s):  
S L Hajduk ◽  
A M Siqueira ◽  
K Vickerman

The kinetoplast DNA (kDNA) of trypanosomes and other parasitic members of the order Kinetoplastida is organized as a complex network containing thousands of catenated circular DNA molecules. We found that the kDNA of a free-living kinetoplastida, Bodo caudatus, exists as a noncatenated structure. The kDNA of B. caudatus represents about 40% of the total cellular DNA, and the major components of this DNA are large circles of 10 and 12 kilobases (kb). Our results indicate that these circles are analogous to trypanosome kDNA minicircles despite their large size and noncatenated form. The kDNA of B. caudatus also contains a minor component of 19 kb which is transcribed. The 19-kb molecules are probably analogous to the maxicircles of trypanosomes. The properties of the B. caudatus kDNA suggest that the catenated network structure of trypanosome kDNA is not required for maxicircle segregation during kinetoplast division or for the expression of the maxicircle genome.


Author(s):  
J.R. Walton

In electron microscopy, lead is the metal most widely used for enhancing specimen contrast. Lead citrate requires a pH of 12 to stain thin sections of epoxy-embedded material rapidly and intensively. However, this high alkalinity tends to leach out enzyme reaction products, making lead citrate unsuitable for many cytochemical studies. Substitution of the chelator aspartate for citrate allows staining to be carried out at pH 6 or 7 without apparent effect on cytochemical products. Moreover, due to the low, controlled level of free lead ions, contamination-free staining can be carried out en bloc, prior to dehydration and embedding. En bloc use of lead aspartate permits the grid-staining step to be bypassed, allowing samples to be examined immediately after thin-sectioning.Procedures. To prevent precipitation of lead salts, double- or glass-distilled H20 used in the stain and rinses should be boiled to drive off carbon dioxide and glassware should be carefully rinsed to remove any persisting traces of calcium ion.


2018 ◽  
Vol 51 (1) ◽  
Author(s):  
Sohail Akhtar ◽  
Muhammad Nouman Tahir ◽  
Imran Amin ◽  
Rana Binyamin ◽  
Shahid Mansoor

2020 ◽  
Vol 16 ◽  
Author(s):  
Edhem Hasković ◽  
Safija Herenda ◽  
Zehra Halilović ◽  
Snežana Unčanin ◽  
Denis Hasković ◽  
...  

Background: The Spectrophotometric method is one of the most suitable analytical techniques for testing the activity of enzymes under the influence of various factors. Methods: The effect of H1-antihistamines of loratadine and calcium ions on enzyme catalase under in vitro conditions was investigated in this paper. Results and Discussion: It has been shown that loratadine isa partial inhibitor of catalase, but this effect is diminished in the presence of calcium ions. Calcium as well as other cations are important for many biological and cellular functions. The kidneys play a central role in the homeostasis of these ions. The activity of the catalase enzyme under the given conditions, the type of inhibition,and the kinetic parameters of the enzyme reaction were determined. Conclusion: We concluded that loratadine is a partially competitive inhibitor.


2021 ◽  
Vol 22 (5) ◽  
pp. 2698
Author(s):  
Vladimir Shafirovich ◽  
Nicholas E. Geacintov

The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells. Here, we focus on the interplay and competition of BER and NER pathways in excising oxidatively generated guanine lesions site-specifically positioned in plasmid DNA templates constructed by a gapped-vector technology. These experiments demonstrate a significant enhancement of the NER yields in covalently closed circular DNA plasmids (relative to the same, but linearized form of the same plasmid) harboring certain oxidatively generated guanine lesions. The interplay between the BER and NER pathways that remove oxidatively generated guanine lesions are reviewed and discussed in terms of competitive binding of the BER proteins and the DNA damage-sensing NER factor XPC-RAD23B to these lesions.


Sign in / Sign up

Export Citation Format

Share Document