system of units
Recently Published Documents


TOTAL DOCUMENTS

630
(FIVE YEARS 47)

H-INDEX

22
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Tatiana Macé ◽  
Maitane Iturrate-Garcia ◽  
Céline Pascale ◽  
Bernhard Niederhauser ◽  
Sophie Vaslin-Reimann ◽  
...  

Abstract. The measurement of ammonia (NH3) in ambient air is a sensitive and priority topic due to its harmful effects on human health and ecosystems. NH3 emissions have continuously increased over the last century in Europe, because of intensive livestock practices and enhanced use of nitrogen-based fertilizers. European air quality monitoring networks monitor atmospheric NH3 amount fractions. However, the lack of stable reference gas mixtures (RGMs) at atmospheric amount fractions to calibrate NH3 analyzers is a common issue of the networks, which results in data that are not accurate, traceable and, thus, geographically comparable. In order to cover this lack, LNE developed, in close collaboration with the company 2M PROCESS, a gas reference generator to generate dynamically NH3 RGMs in air. The method is based on gas permeation and further dynamic dilution to obtain an amount fraction range between 1 and 400 nmol/mol. The calibration of the elements of the generator against LNE primary standards ensures the traceability of the RGMs to the international system of units. Furthermore, the highly accurate flow and oven temperature measurements of the reference generator, together with the associated calibration procedure defined by LNE, guarantee relative expanded uncertainties of the calibration of the NH3 analyzer calibrations lower than 2 % (coverage factor = 2). This result is very satisfactory considering the low NH3 amount fraction levels (1 to 400 nmol/mol) and the phenomena of adsorption and desorption, especially in the presence of traces of water on the surfaces in contact. A bilateral comparison was organized between METAS and LNE, consisting on the calibration of a PICARRO G2103 gas analyzer by both national metrology institutes (NMI). The results highlighted the good agreement between the NH3 reference generators developed by the two institutes and allowed to validate both LNE’s reference generator and calibration procedure. The development of the NH3 reference generator has already raised great interest within the French air quality monitoring networks (AASQA). Since the end of 2020, LNE calibrated several NH3 analyzers of the networks. These requests shows the interest of the AASQA in the development of this new gas reference generator to guarantee the traceability of measurements carried out on the French territory.



Author(s):  
Nadjidath ADOME ◽  
Flora Josiane CHADARE ◽  
Fernande Honfo ◽  
Joseph Hounhouigan

Ricinodendron heudelotii, Vitex doniana and Cleome gynandra are three indigenous species of Benin/West Africa. This review focuses on the physicochemical characteristics of their seeds and the nutritional and functional properties of their oils. In this systematic review, scientific articles and reports were used to collect information. The minima, maxima and mean values were considered and converted into a dry basis and/or the same units by using the international system of units when needed to allow comparison. Seeds of Ricinodendron,Vitex and Cleome fat contents were 51.83 g/100 g dw, 28.55 g/100 g dw and 27.35 g/100 g dw, respectively. The three seed oils contained 58.54 to 87% mono and polyunsaturated fatty acids. Ricinodendron seed oil contained a conjugated polyunsaturated fatty acid α-eleostearic acid (49.3–51.1%). Data varied from one author to another due to the methods used. R. heudelotii seeds oil is traditionally used for the treatment of several diseases. Its oil showed phytochemical and antimicrobial properties suggesting its possible use in pharmaceutical industries. Ricinodendron and Vitex seed oil should not be used for cooking at high temperatures or frying because of their high and medium levels of unsaturation.



2022 ◽  
Vol 2149 (1) ◽  
pp. 012005
Author(s):  
A Gamouras ◽  
D J Woods ◽  
É Côté ◽  
A A Gaertner

Abstract The National Research Council (NRC) of Canada has been working to establish new facilities and to improve measurement capabilities traceable to the International System of Units (SI units) in optical radiometry. The NRC primary spectral irradiance scale has transitioned from a detector-based approach in the range of 700 nm to 1600 nm to a detector and source-based realization from 250 nm to 2500 nm. A high temperature blackbody (HTBB) acts as the primary light source for the calibration of 1000 W FEL spectral irradiance standard lamps. The thermodynamic temperature of the HTBB is determined using an NRC-designed wide-band filter radiometer, with spectral responsivity SI-traceable to the NRC optical power scale. This new facility has significantly improved measurement uncertainties compared to the previous NRC spectral irradiance scale.



2021 ◽  
Author(s):  
Luca Egli ◽  
Julian Gröbner ◽  
Gregor Hülsen ◽  
Herbert Schill ◽  
René Stübi

Abstract. Total column ozone (TCO) is commonly measured by Brewer and Dobson spectroradiometers. Both types of instruments are using four wavelengths in the ultraviolet radiation range to derive TCO. For the calibration and quality assurance of the measured TCO both instrument types require periodic field comparisons with a reference instrument. This study presents traceable TCO retrievals from direct solar spectral irradiance measurements with the portable UV reference instrument QASUME. TCO is retrieved by a spectral fitting technique derived by a minimal least square fit algorithm using spectral measurements in the wavelength range between 305 nm and 345 nm. The retrieval is based on an atmospheric model accounting for different atmospheric parameters such as effective ozone temperature, aerosol optical depth, Rayleigh scattering, SO2, ground air pressure, ozone absorption cross sections and top-of-atmosphere solar spectrum. Traceability means, that the QASUME instrument is fully characterized and calibrated in the laboratory to SI standards (International System of Units). The TCO retrieval method from this instrument is independent from any reference instrument and does not require periodic in situ field calibration. The results show that TCO from QASUME can be retrieved with a relative standard uncertainty of less than 0.8 %, when accounting for all possible uncertainties from the measurements and the retrieval model, such as different cross sections, different reference solar spectra, uncertainties from effective ozone temperature or other atmospheric parameters. The long-term comparison of QASUME TCO with a Brewer and a Dobson in Davos, Switzerland, reveals, that all three instruments are consistent within 1 % when using the ozone absorption cross section from the University of Bremen. From the results and method presented here, other absolute SI calibrated cost effective solar spectroradiometers, such as array spectroradiometers, may be applied for traceable TCO monitoring.



2021 ◽  
Vol 10 (2) ◽  
pp. 289-295
Author(s):  
Daniel Hutzschenreuter ◽  
Bernd Müller ◽  
Jan Henry Loewe ◽  
Rok Klobucar

Abstract. The digital transformation in the field of sensors and sensor systems fosters an increasing exchange and interoperation of measurement data by machines. The data of measurement need to be uniformly structured based on The International System of Units (SI) with appropriate information on measurement uncertainty. This work presents a concept for an online validation system that can be used by humans and software to efficiently classify the agreement of XML-structured data with relevant recommendations for measurement data. The system is within the TraCIM (Traceability for Computationally-Intensive Metrology) validation platform which was developed for software validation in metrology where high standards of quality management must be met.



2021 ◽  
Author(s):  
Sang-Wook Lee ◽  
Sunghun Kim ◽  
Young-Suk Lee ◽  
Jae-Keun Yoo ◽  
Sungjun Lee ◽  
...  

Abstract. A dual thermistor radiosonde (DTR) comprising two (white and black) sensors with different emissivities was developed to correct the effects of solar radiation on temperature sensors based on in-situ radiation measurements. Herein, the DTR performance is characterised in terms of the uncertainty via a series of ground-based facilities and an intercomparison sounding test. The DTR characterisation procedure using laboratory facilities is as follows: individually calibrate the temperature of the thermistors in a climate chamber; test the effect of temperature on the resistance reading using radiosonde boards in the climate chamber; individually perform radiation tests on thermistors; and perform parameterisation of the radiation measurement and correction formulas using an upper air simulator with varying temperature, pressure and ventilation speed. These results are combined and applied to the DTR sounding test conducted in July, 2021. Thereafter, the effective irradiance is measured using the temperature difference between the white and black sensors of the DTR. The measured irradiance is then used for the radiation correction of the DTR white sensor. The radiation-corrected temperature of the DTR is mostly consistent with that of a commercial radiosonde (Vaisala, RS41) within the expanded uncertainty (~0.35 ℃) of the DTR at the coverage factor k = 2. Furthermore, the components contributing to the uncertainty of the radiation measurement and correction are analysed. The DTR methodology can improve the accuracy of temperature measurement in the upper air within the framework of the traceability to the International System of Units.



2021 ◽  
pp. 549-557
Author(s):  
Džanina Omićević ◽  
Dževad Krdžalić ◽  
Esad Vrce


Author(s):  
Madeline Gozzi ◽  
Paul Gaines ◽  
Thomas Kozikowski ◽  
Brian Alexander


Author(s):  
Bernardo Ide ◽  
Amanda Silvatti ◽  
Craig Staunton ◽  
Moacir Marocolo ◽  
Dustin Oranchuk ◽  
...  

The International System of Units (SI) was adopted in 1960 as a universal measuring system to be used for all areas of science. Sports Science papers have shown lots of inaccurate and inappropriate terms for quantification of athletes’ performance and the psychobiological responses to exercise (e.g., internal load). In biomechanics, external and internal loads are forces acting externally and internally, inducing stress and strain in the biological tissues. Therefore, the current review present simple proposals to correct the inappropriate terms: 1) do not use the term external load when referring to the assessment of exercise time, distance, displacement, speed, velocity, acceleration, torque, work, power, impulse, etc.; 2) do not use the term internal load when referring to the assessment of psychobiological stress markers (i.e., session rating of perceived exertion, heart rate, blood lactate, oxygen consumption, etc.); 3) do not use the term impulse when expressing other calculus than integrating force with respect to time, and neither strain, when expressing other phenomena than the body deformation. Instead, the term exercise intensity is universal and can be used to describe all forms of exercise. Finally, duration should precisely be described according to physical quantities (e.g., time, distance, displacement, speed, velocity, acceleration, force, torque, work, power, impulse, etc.) and the units accomplish by use of the SI. These simple quantifications can be performed for the exercises, sessions, microcycles, mesocycles and macrocycles of the athletes. Such standardization will provide a consistent and clear communication among sports scientists and all areas of science.



2021 ◽  
Vol 2094 (5) ◽  
pp. 052011
Author(s):  
Sh M Masharipov ◽  
K R Ruzmatov ◽  
S A Rahmatullayev ◽  
F F Fattoyev ◽  
M M Mahmudjonov ◽  
...  

Abstract The article assessed and investigated the uncertainty of measurements of standard samples of substances and materials in physicochemical measurements based on standard test methods. A general approach to estimating the sources of uncertainty of standard samples is described. Uncertainties from heterogeneity of standard sample material. uncertainty from instability of standard sample characteristic values. uncertainty from method of setting reference value are investigated. Purity of substances is the main parameter that needs to be paid attention to when studying their properties. This is all the more important when it comes to using a pure substance as some approximation to the prototype reference value. since only this unit of seven main units in the International System of Units (SI system) does not have its own standard. In this sense. an important scientific task is the comprehensive study of pure substances for their practical use as benchmarks for comparison in metrological works and analytical research. The main and very important part of the measurement traceability system are materials with certified (certified) content of components and defined uncertainties of these values (standard samples of the approved type). which require pure substances certified at a higher - reference level. i.e. comparison standards.



Sign in / Sign up

Export Citation Format

Share Document