scholarly journals Effective results for points on certain subvarieties of tori

Author(s):  
ATTILA BÉRCZES ◽  
KÁLMÁN GYŐRY ◽  
JAN-HENDRIK EVERTSE ◽  
CORENTIN PONTREAU

AbstractThe combined conjecture of Lang-Bogomolov for tori gives an accurate description of the set of those pointsxof a given subvarietyof$\mathbb{G}_{\bf m}^N(\oQ )=(\oQ^*)^N$, that with respect to the height are “very close” to a given subgroup Γ of finite rank of$\mathbb{G}_{\bf m}^N(\oQ)$. Thanks to work of Laurent, Poonen and Bogomolov, this conjecture has been proved in a more precise form.In this paper we prove, for certain special classes of varieties, effective versions of the Lang-Bogomolov conjecture, giving explicit upper bounds for the heights and degrees of the pointsxunder consideration. The main feature of our results is that the points we consider do not have to lie in a prescribed number field. Our main tools are Baker-type logarithmic forms estimates and Bogomolov-type estimates for the number of points on the varietywith very small height.

2018 ◽  
Vol 14 (09) ◽  
pp. 2333-2342 ◽  
Author(s):  
Henry H. Kim ◽  
Zack Wolske

In this paper, we consider number fields containing quadratic subfields with minimal index that is large relative to the discriminant of the number field. We give new upper bounds on the minimal index, and construct families with the largest possible minimal index.


2014 ◽  
Vol 10 (04) ◽  
pp. 885-903 ◽  
Author(s):  
Paul Pollack

Let 𝕏 be a finite group of primitive Dirichlet characters. Let ξ = ∑χ∈𝕏 aχ χ be a nonzero element of the group ring ℤ[𝕏]. We investigate the smallest prime q that is coprime to the conductor of each χ ∈ 𝕏 and that satisfies ∑χ∈𝕏 aχ χ(q) ≠ 0. Our main result is a nontrivial upper bound on q valid for certain special forms ξ. From this, we deduce upper bounds on the smallest unramified prime with a given splitting type in an abelian number field. For example, let K/ℚ be an abelian number field of degree n and conductor f. Let g be a proper divisor of n. If there is any unramified rational prime q that splits into g distinct prime ideals in ØK, then the least such q satisfies [Formula: see text].


2016 ◽  
Vol 19 (A) ◽  
pp. 315-331
Author(s):  
Alexandre Gélin ◽  
Antoine Joux

In this paper we describe how to compute smallest monic polynomials that define a given number field $\mathbb{K}$. We make use of the one-to-one correspondence between monic defining polynomials of $\mathbb{K}$ and algebraic integers that generate $\mathbb{K}$. Thus, a smallest polynomial corresponds to a vector in the lattice of integers of $\mathbb{K}$ and this vector is short in some sense. The main idea is to consider weighted coordinates for the vectors of the lattice of integers of $\mathbb{K}$. This allows us to find the desired polynomial by enumerating short vectors in these weighted lattices. In the context of the subexponential algorithm of Biasse and Fieker for computing class groups, this algorithm can be used as a precomputation step that speeds up the rest of the computation. It also widens the applicability of their faster conditional method, which requires a defining polynomial of small height, to a much larger set of number field descriptions.


2007 ◽  
Vol 59 (6) ◽  
pp. 1284-1300 ◽  
Author(s):  
Lenny Fukshansky

AbstractLetKbe a number field, and letFbe a symmetric bilinear form in 2Nvariables overK. LetZbe a subspace ofKN. A classical theorem of Witt states that the bilinear space (Z,F) can be decomposed into an orthogonal sum of hyperbolic planes and singular and anisotropic components. We prove the existence of such a decomposition of small height, where all bounds on height are explicit in terms of heights ofFandZ. We also prove a special version of Siegel's lemma for a bilinear space, which provides a small-height orthogonal decomposition into one-dimensional subspaces. Finally, we prove an effective version of the Cartan–Dieudonné theorem. Namely, we show that every isometry σ of a regular bilinear space (Z,F) can be represented as a product of reflections of bounded heights with an explicit bound on heights in terms of heights ofF,Z, and σ.


2018 ◽  
Vol 30 (3) ◽  
pp. 767-773 ◽  
Author(s):  
Wataru Takeda ◽  
Shin-ya Koyama

AbstractWe estimate the number of relatively r-prime lattice points in {K^{m}} with their components having a norm less than x, where K is a number field. The error terms are estimated in terms of x and the discriminant D of the field K, as both x and D grow. The proof uses the bounds of Dedekind zeta functions. We obtain uniform upper bounds as K runs through number fields of any degree under assuming the Lindelöf hypothesis. We also show unconditional results for abelian extensions with a degree less than or equal to 6.


1999 ◽  
Vol 42 (1) ◽  
pp. 127-141
Author(s):  
Dimitrios Poulakis

Let K be an algebraic number field with ring of integers OK and f(X) ∈ OK[X]. In this paper we establish improved explicit upper bounds for the size of solutions in OK, of diophantine equations Y2 = f(X), where f(X) has at least three roots of odd order, and Ym = f(X), where m is an integer ≥ 3 and f(X) has at least two roots of order prime to m.


1991 ◽  
Vol 43 (2) ◽  
pp. 325-329 ◽  
Author(s):  
B. Brindza

Given a finitely generated multiplicative subgroup Us in a number field, we employ a simple argument from the geometry of numbers and an inequality on multiplicative dependence in number fields to obtain a minimal set of generators consisting of elements of relatively small height.


2012 ◽  
Vol 08 (01) ◽  
pp. 227-254 ◽  
Author(s):  
KEVIN J. McGOWN

Let K be a cyclic number field of prime degree ℓ. Heilbronn showed that for a given ℓ there are only finitely many such fields that are norm-Euclidean. In the case of ℓ = 2 all such norm-Euclidean fields have been identified, but for ℓ ≠ 2, little else is known. We give the first upper bounds on the discriminants of such fields when ℓ > 2. Our methods lead to a simple algorithm which allows one to generate a list of candidate norm-Euclidean fields up to a given discriminant, and we provide some computational results.


2018 ◽  
Vol 149 (6) ◽  
pp. 1421-1433 ◽  
Author(s):  
Abbas Maarefparvar ◽  
Ali Rajaei

AbstractA number field K with a ring of integers 𝒪K is called a Pólya field, if the 𝒪K-module of integer-valued polynomials on 𝒪K has a regular basis, or equivalently all its Bhargava factorial ideals are principal [1]. We generalize Leriche's criterion [8] for Pólya-ness of Galois closures of pure cubic fields, to general S3-extensions of ℚ. Also, we prove for a real (resp. imaginary) Pólya S3-extension L of ℚ, at most four (resp. three) primes can be ramified. Moreover, depending on the solvability of unit norm equation over the quadratic subfield of L, we determine when these sharp upper bounds can occur.


Filomat ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 1199-1207 ◽  
Author(s):  
Ming Li

Even there were several facts to show that ||an+1(f)|-|an(f)|| ? 1 is not true for the whole class of normalised univalent functions in the unit disk with with the form f(z) = z + ??,k=2 akzk. In 1978, Leung[7] proved ||an+1(f)|-|an(f)|| is actually bounded by 1 for starlike functions and by this result it is easy to get the conclusion |an| ? n for starlike functions. Since ||an+1(f)|-|an(f)|| ? 1 implies the Bieberbach conjecture (now the de Brange theorem), so it is still interesting to investigate the bound of ||an+1(f)|-|an(f)|| for the class of spirallike functions as this class of functions is closely related to starlike functions. In this article we prove that this functional is bounded by 1 and equality occurs only for the starlike case. We are also able to give a precise form of extremal functions. Furthermore we also try to find the sharp bound of ||an+1(f)|-|an(f)|| for non-starlike spirallike functions. By using the Carath?odory-Toeplitz theorem, we obtain the sharp lower and upper bounds of |an+1(f)|-|an(f)| for n = 1 and n = 2. These results disprove the expected inequality ||an+1(f)|-|an(f)||? cos ? for ?-spirallike functions.


Sign in / Sign up

Export Citation Format

Share Document