A generalisation of the Abhyankar Jung theorem to associated graded rings of valuations

2015 ◽  
Vol 160 (2) ◽  
pp. 233-255 ◽  
Author(s):  
STEVEN DALE CUTKOSKY

AbstractSuppose thatR→Sis an extension of local domains andν* is a valuation dominatingS. We consider the natural extension of associated graded rings along the valuation grν*(R) → grν*(S). We give examples showing that in general, this extension does not share good properties of the extensionR→S, but after enough blow ups above the valuations, good properties of the extensionR→Sare reflected in the extension of associated graded rings. Stable properties of this extension (after blowing up) are much better in characteristic zero than in positive characteristic. Our main result is a generalisation of the Abhyankar–Jung theorem which holds for extensions of associated graded rings along the valuation, after enough blowing up.

2008 ◽  
Vol 191 ◽  
pp. 111-134 ◽  
Author(s):  
Christian Liedtke

AbstractWe establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we show that Horikawa surfaces lift to characteristic zero.


1991 ◽  
Vol 122 ◽  
pp. 161-179 ◽  
Author(s):  
Yoshifumi Takeda

Let f: V → C be a fibration from a smooth projective surface onto a smooth projective curve over an algebraically closed field k. In the case of characteristic zero, almost all fibres of f are nonsingular. In the case of positive characteristic, it is, however, known that there exist fibrations whose general fibres have singularities. Moreover, it seems that such fibrations often have pathological phenomena of algebraic geometry in positive characteristic (see M. Raynaud [7], W. Lang [4]).


2008 ◽  
Vol 07 (01) ◽  
pp. 109-128
Author(s):  
D. P. PATIL ◽  
G. TAMONE

Let (R,𝔪) be a 1-dimensional Cohen–Macaulay local ring of multiplicity e and embedding dimension ν ≥ 2. Let B denote the blowing-up of R along 𝔪 and let I be the conductor of R in B. Let x ∈ 𝔪 be a superficial element in 𝔪 of degree 1 and [Formula: see text], [Formula: see text]. We assume that the length [Formula: see text]. This class of local rings contains the class of 1-dimensional Gorenstein local rings (see 1.5). In Sec. 1, we prove that (see 1.6) if the associated graded ring G = gr 𝔪(R) is Cohen–Macaulay, then I ⊆ 𝔪s + xR, where s is the degree of the h-polynomial h R of R. In Sec. 2, we give necessary and sufficient conditions (see Corollaries 2.4, 2.5, 2.9 and Theorem 2.11) for the Cohen–Macaulayness of G. These conditions are numerical conditions on the h-polynomial h R, particularly on its coefficients and the degree in comparison with the difference e - ν. In Sec. 3, we give some conditions (see Propositions 3.2, 3.3 and Corollary 3.4) for the Gorensteinness of G. In Sec. 4, we give a characterization (see Proposition 4.3) of numerical semigroup rings which satisfy the condition [Formula: see text].


2007 ◽  
Vol 06 (03) ◽  
pp. 469-475 ◽  
Author(s):  
SANDRO MATTAREI

It is known that the weight (that is, the number of nonzero coefficients) of a univariate polynomial over a field of characteristic zero is larger than the multiplicity of any of its nonzero roots. We extend this result to an appropriate statement in positive characteristic. Furthermore, we present a new proof of the original result, which produces also the exact number of monic polynomials of a given degree for which the bound is attained. A similar argument allows us to determine the number of monic polynomials of a given degree, multiplicity of a given nonzero root, and number of nonzero coefficients, over a finite field of characteristic larger than the degree.


Sign in / Sign up

Export Citation Format

Share Document