scholarly journals ROOT MULTIPLICITIES AND NUMBER OF NONZERO COEFFICIENTS OF A POLYNOMIAL

2007 ◽  
Vol 06 (03) ◽  
pp. 469-475 ◽  
Author(s):  
SANDRO MATTAREI

It is known that the weight (that is, the number of nonzero coefficients) of a univariate polynomial over a field of characteristic zero is larger than the multiplicity of any of its nonzero roots. We extend this result to an appropriate statement in positive characteristic. Furthermore, we present a new proof of the original result, which produces also the exact number of monic polynomials of a given degree for which the bound is attained. A similar argument allows us to determine the number of monic polynomials of a given degree, multiplicity of a given nonzero root, and number of nonzero coefficients, over a finite field of characteristic larger than the degree.

2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


2008 ◽  
Vol 191 ◽  
pp. 111-134 ◽  
Author(s):  
Christian Liedtke

AbstractWe establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we show that Horikawa surfaces lift to characteristic zero.


2017 ◽  
Vol 9 (3) ◽  
pp. 8
Author(s):  
Yasanthi Kottegoda

We consider homogeneous linear recurring sequences over a finite field $\mathbb{F}_{q}$, based on an irreducible characteristic polynomial of degree $n$ and order $m$. Let $t=(q^{n}-1)/ m$. We use quadratic forms over finite fields to give the exact number of occurrences of zeros of the sequence within its least period when $t$ has q-adic weight 2. Consequently we prove that the cardinality of the set of zeros for sequences from this category is equal to two.


1991 ◽  
Vol 122 ◽  
pp. 161-179 ◽  
Author(s):  
Yoshifumi Takeda

Let f: V → C be a fibration from a smooth projective surface onto a smooth projective curve over an algebraically closed field k. In the case of characteristic zero, almost all fibres of f are nonsingular. In the case of positive characteristic, it is, however, known that there exist fibrations whose general fibres have singularities. Moreover, it seems that such fibrations often have pathological phenomena of algebraic geometry in positive characteristic (see M. Raynaud [7], W. Lang [4]).


2018 ◽  
Vol 17 (04) ◽  
pp. 1850064
Author(s):  
C. Bekh-Ochir ◽  
S. A. Rankin

In earlier work, it was established that for any finite field [Formula: see text] and any nonempty set [Formula: see text], the free associative (nonunitary) [Formula: see text]-algebra on [Formula: see text], denoted by [Formula: see text], had infinitely many maximal [Formula: see text]-spaces, but exactly two maximal [Formula: see text]-ideals (each of which was shown to be a maximal [Formula: see text]-space). This raises the interesting question as to whether or not the maximal [Formula: see text]-spaces can be classified. However, aside from the two maximal [Formula: see text]-ideals, no examples of maximal [Formula: see text]-spaces of [Formula: see text] have been identified to this point. This paper presents, for each finite field [Formula: see text], an infinite set of proper [Formula: see text]-spaces [Formula: see text] of [Formula: see text], none of which is a [Formula: see text]-ideal. It is proven that for any distinct integers [Formula: see text], [Formula: see text]. Furthermore, it is proven that for the prime field [Formula: see text], [Formula: see text] any prime, [Formula: see text] is a maximal [Formula: see text]-space of [Formula: see text]. We conjecture that for any finite field [Formula: see text] of positive characteristic different from 2 and each integer [Formula: see text], [Formula: see text] is a maximal [Formula: see text]-space of [Formula: see text]. In characteristic 2, the situation is slightly different and we provide different candidates for maximal [Formula: see text]-spaces.


2020 ◽  
Vol 23 (3) ◽  
pp. 489-502
Author(s):  
Chun Yin Hui ◽  
Krishna Kishore

AbstractLet κ be a characteristic p finite field of q elements and {\mathfrak{N}_{\kappa}} the Nottingham group over κ. Lubin associated to every conjugacy class of torsion element of {\mathfrak{N}_{\kappa}} a type. We establish an upper bound {B(q;l,m)} on the number of conjugacy classes of order {p^{2}} torsion elements u of {\mathfrak{N}_{\kappa}} of type {\langle l,m\rangle}. In the case where {l<p}, the bound {B(q;l,m)} is the exact number of conjugacy classes. Moreover, we give a criterion on when u and {u^{n}} are conjugate.


2011 ◽  
Vol 204 ◽  
pp. 125-157 ◽  
Author(s):  
Mircea Mustaţă ◽  
Vasudevan Srinivas

AbstractWe consider the following conjecture: ifXis a smooth and irreduciblen-dimensional projective variety over a fieldkof characteristic zero, then there is a dense set of reductionsXsto positive characteristic such that the action of the Frobenius morphism onHn(Xs, OXs) is bijective. There is another conjecture relating certain invariants of singularities in characteristic zero (the multiplier ideals) with invariants in positive characteristic (the test ideals). We prove that the former conjecture implies the latter one in the case of ambient nonsingular varieties.


Author(s):  
Jason Bell ◽  
Rahim Moosa ◽  
Adam Topaz

The following theorem, which includes as very special cases results of Jouanolou and Hrushovski on algebraic $D$ -varieties on the one hand, and of Cantat on rational dynamics on the other, is established: Working over a field of characteristic zero, suppose $\unicode[STIX]{x1D719}_{1},\unicode[STIX]{x1D719}_{2}:Z\rightarrow X$ are dominant rational maps from an (possibly nonreduced) irreducible scheme $Z$ of finite type to an algebraic variety $X$ , with the property that there are infinitely many hypersurfaces on  $X$ whose scheme-theoretic inverse images under $\unicode[STIX]{x1D719}_{1}$ and $\unicode[STIX]{x1D719}_{2}$ agree. Then there is a nonconstant rational function $g$ on $X$ such that $g\unicode[STIX]{x1D719}_{1}=g\unicode[STIX]{x1D719}_{2}$ . In the case where $Z$ is also reduced, the scheme-theoretic inverse image can be replaced by the proper transform. A partial result is obtained in positive characteristic. Applications include an extension of the Jouanolou–Hrushovski theorem to generalised algebraic ${\mathcal{D}}$ -varieties and of Cantat’s theorem to self-correspondences.


Author(s):  
B. A. F. Wehrfritz

AbstractIf X is a group-class, a group G is right X-Engel if for all g in G there exists an X-subgroup E of G such that for all x in G there is a positive integer m(x) with [g, nx] ∈ E for all n ≥ m(x). Let G be a linear group. Special cases of our main theorem are the following. If X is the class of all Chernikov groups, or all finite groups, or all locally finite groups, then G is right X-Engel if and only if G has a normal X-subgroup modulo which G is hypercentral. The same conclusion holds if G has positive characteristic and X is one of the following classes; all polycyclic-by-finite groups, all groups of finite Prüfer rank, all minimax groups, all groups with finite Hirsch number, all soluble-by-finite groups with finite abelian total rank. In general the characteristic zero case is more complex.


2002 ◽  
Vol 32 (12) ◽  
pp. 721-738 ◽  
Author(s):  
John Michael Nahay

We prove that the author'spowersum formulayields a nonzero expression for a particular linear ordinary differential equation, called aresolvent, associated with a univariate polynomial whose coefficients lie in a differential field of characteristic zero provided the distinct roots of the polynomial are differentially independent over constants. By definition, the terms of a resolvent lie in the differential field generated by the coefficients of the polynomial, and each of the roots of the polynomial are solutions of the resolvent. One example shows how the powersum formula works. Another example shows how the proof that the formula is not zero works.


Sign in / Sign up

Export Citation Format

Share Document