scholarly journals Maximal prime homomorphic images of mod-p Iwasawa algebras

Author(s):  
WILLIAM WOODS

Abstract Let k be a finite field of characteristic p, and G a compact p-adic analytic group. Write kG for the completed group ring of G over k. In this paper, we describe the structure of the ring kG/P, where P is a minimal prime ideal of kG. We give an explicit isomorphism between kG/P and a matrix ring with coefficients in the ring ${(k'G')_\alpha }$ , where $k'/k$ is a finite field extension, $G'$ is a large subquotient of G with no finite normal subgroups, and (–) α is a “twisting” operation that preserves many desirable properties of the ring structure. We demonstrate the usefulness of this isomorphism by studying the correspondence induced between certain ideals of kG and those of ${(k'G')_\alpha }$ , and showing that this preserves many useful “group-theoretic” properties of ideals, in particular almost-faithfulness and control by a closed normal subgroup.

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 702
Author(s):  
Aixian Zhang ◽  
Keqin Feng

Normal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension R / Z p r , where R = GR ( p r , n ) . We present a criterion on the normal basis for R / Z p r and reduce this problem to one of finite field extension R ¯ / Z ¯ p r = F q / F p ( q = p n ) by Theorem 1. We determine all optimal normal bases for Galois ring extension.


Author(s):  
Sumukh Deshpande ◽  
Saikat Kumar Basu ◽  
Pooja Purohit

We have surveyed polypeptides with the optimal conformations of nests which are the common anion-binding motifs comprising 8% of the amino acids which are characterized by a structural depression or a hole. Using automated bioinformatics algorithm, novel ring structure of the nest has been found. Using automated algorithm, models of polypeptides were made in-silico (computationally) and oxygen atoms are inserted along the extension of the NH groups. These sophisticated algorithms allow insertion of atoms along the NH group at the correct distance which causes extension of the group thus forming hydrogen bond. Optimal conformations of these structures are found from these customized models. This study chapter provides a demonstration of an important discovery of optimum conformations of RL and LR nests by the use of sophisticated bioinformatics automation pipeline and a unique application of automation and control in bioinformatics.


1982 ◽  
Vol 34 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Leslie G. Roberts

Let A be the co-ordinate ring of a reduced curve over a field k. This means that A is an algebra of finite type over k, A has no nilpotent elements, and that if P is a minimal prime ideal of A, then A/P is an integral domain of Krull dimension one. Let M be a maximal ideal of A. Then G(A) (the graded ring of A relative to M) is defined to be . We get the same graded ring if we first localize at M, and then form the graded ring of AM relative to the maximal ideal MAM. That isLet Ā be the integral closure of A. If P1, P2, …, Ps are the minimal primes of A thenwhere A/Pi is a domain and is the integral closure of A/Pi in its quotient field.


1998 ◽  
Vol 40 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Gary F. Birkenmeier ◽  
Jin Yong Kim ◽  
Jae Keol Park

AbstractLet P be a prime ideal of a ring R, O(P) = {a ∊ R | aRs = 0, for some s ∊ R/P} | and Ō(P) = {x ∊ R | xn ∊ O(P), for some positive integer n}. Several authors have obtained sheaf representations of rings whose stalks are of the form R/O(P). Also in a commutative ring a minimal prime ideal has been characterized as a prime ideal P such that P= Ō(P). In this paper we derive various conditions which ensure that a prime ideal P = Ō(P). The property that P = Ō(P) is then used to obtain conditions which determine when R/O(P) has a unique minimal prime ideal. Various generalizations of O(P) and Ō(P) are considered. Examples are provided to illustrate and delimit our results.


Author(s):  
Lucas Reis

This paper provides a mean value theorem for arithmetic functions [Formula: see text] defined by [Formula: see text] where [Formula: see text] is an arithmetic function taking values in [Formula: see text] and satisfying some generic conditions. As an application of our main result, we prove that the density [Formula: see text] (respectively, [Formula: see text]) of normal (respectively, primitive) elements in the finite field extension [Formula: see text] of [Formula: see text] are arithmetic functions of (nonzero) mean values.


2017 ◽  
Vol 163 (3) ◽  
pp. 423-452 ◽  
Author(s):  
CHRISTINE BACHOC ◽  
ORIOL SERRA ◽  
GILLES ZÉMOR

AbstractWe are interested in characterising pairs S, T of F-linear subspaces in a field extension L/F such that the linear span ST of the set of products of elements of S and of elements of T has small dimension. Our central result is a linear analogue of Vosper's Theorem, which gives the structure of vector spaces S, T in a prime extension L of a finite field F for which \begin{linenomath}$$ \dim_FST =\dim_F S+\dim_F T-1, $$\end{linenomath} when dimFS, dimFT ⩾ 2 and dimFST ⩽ [L : F] − 2.


1991 ◽  
Vol 56 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Kostas Hatzikiriakou

We assume that the reader is familiar with the program of “reverse mathematics” and the development of countable algebra in subsystems of second order arithmetic. The subsystems we are using in this paper are RCA0, WKL0 and ACA0. (The reader who wants to learn about them should study [1].) In [1] it was shown that the statement “Every countable commutative ring has a prime ideal” is equivalent to Weak Konig's Lemma over RCA0, while the statement “Every countable commutative ring has a maximal ideal” is equivalent to Arithmetic Comprehension over RCA0. Our main result in this paper is that the statement “Every countable commutative ring has a minimal prime ideal” is equivalent to Arithmetic Comprehension over RCA0. Minimal prime ideals play an important role in the study of countable commutative rings; see [2, pp. 1–7].


Sign in / Sign up

Export Citation Format

Share Document