scholarly journals Joint Poisson distribution of prime factors in sets

Author(s):  
KEVIN FORD

Abstarct Given disjoint subsets T1, …, Tm of “not too large” primes up to x, we establish that for a random integer n drawn from [1, x], the m-dimensional vector enumerating the number of prime factors of n from T1, …, Tm converges to a vector of m independent Poisson random variables. We give a specific rate of convergence using the Kubilius model of prime factors. We also show a universal upper bound of Poisson type when T1, …, Tm are unrestricted, and apply this to the distribution of the number of prime factors from a set T conditional on n having k total prime factors.

2010 ◽  
Vol 51 ◽  
Author(s):  
Jonas Kazys Sunklodas

In the paper, we present the upper bound of Lp norms ∆p of the order (a1 + a2)/(DZ)-1/2 for all 1 < p< ∞, of the normal approximation for a standardized random variable (Z - EZ)/√DZ, where the random variable Z = a1X + a2Y , a1 + a2 = 1, ai > 0, i = 1, 2, the random variable X is distributed by the Poisson distribution with the parameter λ > 0, and the random variable Y by the standard gamma distribution Γ (α, 0, 1) with the parameter α > 0.


2002 ◽  
Vol 34 (03) ◽  
pp. 609-625 ◽  
Author(s):  
N. Papadatos ◽  
V. Papathanasiou

The random variablesX1,X2, …,Xnare said to be totally negatively dependent (TND) if and only if the random variablesXiand ∑j≠iXjare negatively quadrant dependent for alli. Our main result provides, for TND 0-1 indicatorsX1,x2, …,Xnwith P[Xi= 1] =pi= 1 - P[Xi= 0], an upper bound for the total variation distance between ∑ni=1Xiand a Poisson random variable with mean λ ≥ ∑ni=1pi. An application to a generalized birthday problem is considered and, moreover, some related results concerning the existence of monotone couplings are discussed.


Author(s):  
JANUSZ WYSOCZAŃSKI

We show how the construction of t-transformation can be applied to the construction of a sequence of monotonically independent noncommutative random variables. We introduce the weakly monotone Fock space, on which these operators act. This space can be derived in a natural way from the papers by Pusz and Woronowicz on twisted second quantization. It was observed by Bożejko that, by taking μ = 0, for the μ-CAR relations one obtains the Muraki's monotone Fock space, while for the μ-CCR relations one obtains the weakly monotone Fock space. We show that the direct proof of the central limit theorem for these operators provides an interesting recurrence for the highest binomial coefficients. Moreover, we show the Poisson type theorem for these noncommutative random variables.


2004 ◽  
Vol 41 (4) ◽  
pp. 1081-1092 ◽  
Author(s):  
P. Vellaisamy

Consider a sequence of independent Bernoulli trials with success probability p. Let N(n; k1, k2) denote the number of times that k1 failures are followed by k2 successes among the first n Bernoulli trials. We employ the Stein-Chen method to obtain a total variation upper bound for the rate of convergence of N(n; k1, k2) to a suitable Poisson random variable. As a special case, the corresponding limit theorem is established. Similar results are obtained for Nk3(n; k1, k2), the number of times that k1 failures followed by k2 successes occur k3 times successively in n Bernoulli trials. The bounds obtained are generally sharper than, and improve upon, some of the already known results. Finally, the technique is adapted to obtain Poisson approximation results for the occurrences of the above-mentioned events under Markov-dependent trials.


2013 ◽  
Vol 23 (6) ◽  
pp. 1257-1265 ◽  
Author(s):  
GEORGE DAVIE ◽  
WILLEM L. FOUCHÉ

We examine a construction due to Fouché in which a Brownian motion is constructed from an algorithmically random infinite binary sequence. We show that although the construction is provably not computable in the sense of computable analysis, a lower bound for the rate of convergence is computable in any upper bound for the compressibilty of the sequence, making the construction layerwise computable.


1975 ◽  
Vol 12 (02) ◽  
pp. 279-288 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution function of the maximum of the successive partial sums of independent and identically distributed random variables and G(x) its limiting distribution function. Under conditions, typical for complete exponential convergence, the decay of Gn (x) — G(x) is asymptotically equal to c.H(x)n −3/2 γn as n → ∞ where c and γ are known constants and H(x) is a function solely depending on x.


2017 ◽  
Vol 15 (1) ◽  
pp. 467-476
Author(s):  
Li Ge ◽  
Sanyang Liu ◽  
Yu Miao

Abstract In the present paper, we have established the complete convergence for weighted sums of pairwise independent random variables, from which the rate of convergence of moving average processes is deduced.


Sign in / Sign up

Export Citation Format

Share Document